Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access August 19, 2019

Evaluation of terrestrial and airborne gravity data over Antarctica – a generic approach

  • P. Zingerle EMAIL logo , R. Pail , M. Scheinert and T. Schaller

Abstract

The AntGrav project, funded by the German Research Foundation (DFG) has the main objective to homogenize and optimize Antarctic gravity field information. Within this project an evaluation procedure is needed to inspect all different kind of gravity field surveys available in Antarctica. In this paper a suitable methodology is proposed.

We present an approach for fast 3D gravity point data reduction in different spectral bands. This is achieved through pre-calculating a fine 3D mesh of synthesized gravity functionals over the entirety of the Antarctic continent, for which two different global models are used: the combined satellite model GOCO05s for the long-wavelength part, and the topographic model Earth2014 for the shorter wavelengths. To maximize the applicability separate meshes are calculated for different spectral bands in order to specifically reduce a certain band or a selected combination. All meshes are calculated for gravity anomalies as well as gravity disturbances. Utilizing these meshes, synthesized gravity data at arbitrary positions is computed by conventional 3D interpolation methods (e.g. linear, cubic or spline).

It is shown that the applied approach can reach a worst-case interpolation error of less than 1 mGal. Evaluation results are presented for the AntGG grid and exemplary for the in-situ measurements of the AGAP and BAS-LAND campaigns. While general properties, large-scale errors and systematic effects can usually be detected, small-scale errors (e.g. of single points) are mostly untraceable due to the uncertainties within the topographic model.

References

Ferraccioli F., Finn C. A., Jordan T. A., Bell R. E., Anderson L. M. and Damaske D, 2011, East Antarctic rifting triggers uplift of the Gamburtsev Mountains, Nature, 479, 388-392. doi:10.1038/nature1056610.1038/10566Search in Google Scholar

Fukushima T., 2012, Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers, J. Geod., 86, 271-285. doi:10.1007/s00190-011-0519-210.1007/s00190-011-0519-2Search in Google Scholar

Hirt C., Rexer M., Scheinert M., Pail R., Claessens S. and Holmes S., 2016, A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data., J. Geod., 90, 105-127.10.1007/s00190-015-0857-6Search in Google Scholar

Ivanov K. G., Pavlis N. K. and Petrushev P., 2018, Precise and efficient evaluation of gravimetric quantities at arbitrarily scattered points in space, J. Geod., 92, 779-796. doi:10.1007/s00190-017-1094-y10.1007/s00190-017-1094-ySearch in Google Scholar

Jekeli C., 1981, Alternative methods to smooth the Earth’s gravity field, retrieved from http://adsabs.harvard.edu/abs/1981amse.bookSearch in Google Scholar

Lekien F. and Marsden J., 2005, Tricubic interpolation in three dimensions, Int. J. Numer. Methods Eng., 63, 455-471. doi:10.1002/nme.129610.1002/nme.1296Search in Google Scholar

Mayer-Gürr T., 2015, The combined satellite gravity field model GOCO05s, EGU General Assembly Conference Abstracts, 17, p. 12364.Search in Google Scholar

Moritz H., 1980, Geodetic reference system 1980, Bulletin Geodesique, 54, 395-405. doi:10.1007/BF0252148010.1007/BF02521480Search in Google Scholar

Moritz H., 2000, Geodetic Reference System 1980, J. Geod., 74, 128. doi:10.1007/s00190005027810.1007/s001900050278Search in Google Scholar

Pail, R. Fecher T., Barnes D., Factor J. F., Holmes S. A., Gruber T. and Zingerle P., 2018, Short note: the experimental geopotential model XGM2016, J. Geod., 92, 443. doi:10.1007/s00190-017-1070-610.1007/s00190-017-1070-6Search in Google Scholar

Rapp R. H., 1997, Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference, J. Geod., 71, 282-289. doi:10.1007/s00190005009610.1007/s001900050096Search in Google Scholar

Rexer M., Hirt, C. Claessens, S. and Tenzer R., 2016, Layer-Based Modelling of the Earth’s Gravitational Potential up to 10-km Scale in Spherical Harmonics in Spherical and Ellipsoidal Approximation, Surv. Geophys., 37, 1035. doi:10.1007/s10712-016-9382-210.1007/s10712-016-9382-2Search in Google Scholar

Scheinert M., Ferraccioli,F., Schwabe J., Bell R., Studinger M., Damaske D., Jokat W., Aleshkova N., Jordan T., Leitchenkov Blankenship G. D. D., Damiani T. M., Young D., Cochran J. R., Richter T. D., 2016, New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica, Geophys. Res. Lett., 43, 600-610.10.1002/2015GL067439Search in Google Scholar PubMed PubMed Central

Shannon C. E., 1949, Communication in the Presence of Noise, IEEE Proceedings, 37, 10-21. doi:10.1109/JPROC.1998.65949710.1109/JPROC.1998.659497Search in Google Scholar

Sneeuw N., 1994, Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophys. J. Int., 118, 707-716.10.1111/j.1365-246X.1994.tb03995.xSearch in Google Scholar

Received: 2019-01-25
Accepted: 2019-04-30
Published Online: 2019-08-19

© 2019 P. Zingerle et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/jogs-2019-0004/html
Scroll to top button