Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 28, 2016

GNSS-SNR water level estimation using global optimization based on interval analysis

  • J. Reinking

Abstract

The signal-to-noise ratio (SNR) from GNSS receivers allows computing the height of a reflecting surface by analyzing the interference pattern. In classical interference pattern technique the distance between the antenna and the reflector is derived from the multipath pattern using a one-dimensional Lomb-Scargle periodogram (LSP) which permits the estimation of constant or quasi static reflector heights only. Inwaters with tidal influence some authors used one-dimensional LSP to iteratively estimate an approximate time-dependent correction term for the variable reflector height. Other authors applied nonlinear least squares adjustment that requires choosing initial parameters what might become crucial due to the multimodality of the problem.

We suggest and apply an alternative approach that allows finding the global optimum of a multi-dimensional cost function of a common least squares adjustment based on interval analysis. This method reduces the computational efforts compared to LSP. The technique is demonstrated using a simulated data set derived fromreal measurements on the Weser river, Germany. Additionally, real data from a gauge in the North Sea is analyzed.

References

[1] Bishop G.J., Klobuchar J.A. and Doherty P.H., 1985, Multipath effects on the determination of absolute ionospheric time delay from GPS signals. Radio Sci, 20(3):388-396. doi: 10.1029/RS020i003p00388 10.1029/RS020i003p00388Search in Google Scholar

[2] Georgiadou Y. and Kleusberg A., 1988, On carrier signal multipath effects in relative GPS positioning. Manusc Geod 13(3), 172-179. Search in Google Scholar

[3] Bilich A., Larson K.M. and Axelrad P., 2008, Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva. J Geophys Res, 113, B04401. doi: 10.1029/2007JB005194 10.1029/2007JB005194Search in Google Scholar

[4] Larson K.,Small E.E., Gutmann E., Bilich A., Axelrad P. and Braun J., 2008, Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS solut, 12(3), 173-177. doi: 10.1007/ s10291-007-0076-6 10.1007/s10291-007-0076-6Search in Google Scholar

[5] Larson K.M., Löfgren J.S. and Haas R., 2012, Coastal sea level measurements using a single geodetic receiver. Adv Space Res 51(10), 1301-1310. doi: 10.1016/j.asr.2012.04.017 10.1016/j.asr.2012.04.017Search in Google Scholar

[6] Löfgren J., Haas R., Scherneck H. and Bos M., 2011, Three months of local sea level derived from reflected GNSS signals. Radio Sci 46(4). doi: 10.1029/2011RS004693 10.1029/2011RS004693Search in Google Scholar

[7] Larson K.M., Ray R.D., Nievinski F.G. and Freymueller J.T., 2013, The Accidental Tide Gauge: A GPS Reflection Case Study From Kachemak Bay, Alaska. IEEE Geosci Remote S 10(5), 1200-1204. doi: 10.1109/LGRS.2012.2236075 10.1109/LGRS.2012.2236075Search in Google Scholar

[8] Löfgren J. and Haas R., 2014, Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP J Adv Sig Pr 2014(1), 1687–6172. doi: 10.1186/1687-6180-2014-50 10.1186/1687-6180-2014-50Search in Google Scholar

[9] Roussel N., Ramillien G., Frappart F., Darrozes J., Gay A., Biancale R et al., 2015, Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sens Environ 171, 261- 277. doi: 10.1016/j.asr.2015.10.011 10.1016/j.asr.2015.10.011Search in Google Scholar

[10] Löfgren J., Haas R. and Scherneck H., 2014, Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. J Geodyn, 80, 66–80. doi: 10.1016/j.jog.2014.02.012 10.1016/j.jog.2014.02.012Search in Google Scholar

[11] Löfgren J., 2014, Local sea level observations using reflected GNSS signals. Dissertation. Chalmers University of Technology. Search in Google Scholar

[12] Lomb N.R., 1976, Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39, 447–462. doi: 10.1007/BF00648343 10.1007/BF00648343Search in Google Scholar

[13] Scargle J.D., 1982, Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical J 263, 835–853. 10.1086/160554Search in Google Scholar

[14] Santamaría-Gómez A.,Watson C., Gravelle M., King M. and Wöppelmann G., 2015, Levelling co-located GNSS and tide gauge stations using GNSS reflectometry. J Geod 89:241–258. doi: 10.1007/s00190-014-0784-y 10.1007/s00190-014-0784-ySearch in Google Scholar

[15] Strandberg J., Hobiger T. and Haas R., 2016, Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Sci., 51, doi:10.1002/2016RS006057. 10.1002/2016RS006057Search in Google Scholar

[16] Nievinski F. G. and Larson K. M., 2014, Forward modeling of GPS multipath for near-surface reflectometry and positioning applications. GPS solut, 18(2), 309-322. doi: 10.1007/s10291-013- 0331-y Search in Google Scholar

[17] Hansen E. and Walster G.W. (2003) Global optimization using interval analysis: revised and expanded (Vol. 264). CRC Press, Boca Raton. 10.1201/9780203026922Search in Google Scholar

[18] Vaníček P., 1969, Approximate spectral analysis by least-squares fit. Astrophys Space Sci 4 (4): 387–391. doi:10.1007/BF00651344 10.1007/BF00651344Search in Google Scholar

[19] Metropolis N., Rosenbluth A., Rosenbluth M., Teller A. and Teller E., 1953, Equation of state calculations by fast computing machines. J Chem Phys 21 (1953) 1087–1092. doi: 10.1063/1.1699114 10.1063/1.1699114Search in Google Scholar

[20] Holland J.H., 1975, Adaptation in Natural and Artificial Systems. MIT Press, ISBN: 9780262581110, reprint 1992 Search in Google Scholar

[21] Hansen E., 1979, Global optimization using interval analysis: the one-dimensional case. J Optim Theor Appl 29(3), 331-344. doi: 10.1007/BF00933139 10.1007/BF00933139Search in Google Scholar

[22] Hansen E., 1980, Global optimization using interval analysis: the multi-dimensional case. NumerischeMathematik 34(3), 247-270. doi: 10.1007/BF01396702 10.1007/BF01396702Search in Google Scholar

[23] Moore R.E., 1966, Interval Analysis, Prentice-Hall, Englewood Cliffs. Search in Google Scholar

[24] Xu P., 2002, A hybrid global optimization method: the onedimensional case. J Comput Appl Math 147(2), 301-314, doi:10.1016/S0377-0427(02)00438-7 10.1016/S0377-0427(02)00438-7Search in Google Scholar

[25] Araya I. and Reyes V., 2015, Interval Branch-and-Bound algorithms for optimization and constraint satisfaction: a survey and prospects. J Glob Optim. doi: 10.1007/s10898-015-0390-4 10.1007/s10898-015-0390-4Search in Google Scholar

[26] Land A.H. and Doig A.G., 1960, An automatic method of solving discrete programming problems. Econometrica, 28(3), 497– 520. doi: 10.1007/978-3-540-68279-0_5 10.1007/978-3-540-68279-0_5Search in Google Scholar

[27] Xu P., 2003, A hybrid global optimization method: The multidimensional case. J Comput Appl Math 155(2), 423-446. doi: 10.1016/S0377-0427(02)00878-6 10.1016/S0377-0427(02)00878-6Search in Google Scholar

[28] Beelitz T., 2006, Eflziente Methoden zum Verifizierten Lösen von Optimierungsaufgaben und Nichtlinearen Gleichungssystemen. Dissertation, Bergische Universität Wuppertal. http://elpub.bib.uni-wuppertal.de/edocs/dokumente/ ffic/mathematik/diss2006/beelitz/dc0603.pdf. Accessed 06 October 2016. Search in Google Scholar

[29] Stöcker M., 2014, Globale Optimierungsverfahren, garantiert globale Lösungen und energieeflziente Fahrzeuggetriebe. Dissertation, Technischen Universität Chemnitz. http: //www.qucosa.de/fileadmin/data/qucosa/documents/16680/ Dissertation_Martin_Stoecker.pdf. Accessed 06 October 2016. Search in Google Scholar

[30] Hansen E.R. and Greenberg R.I., 1983, An interval Newton method, Appl Math Comp, 12(2), 89-98. doi: 10.1016/0096- 3003(83)90001-2 Search in Google Scholar

[31] Gotthardt E., 1978, Einführung in die Ausgleichungsrechnung. Herbert Wichmann Verlag, Karlsruhe, Germany. Search in Google Scholar

[32] Moore R.E., Kearfott R.B. and Cloud M.J., 2009, Introduction to Interval Analysis. SIAM. doi: 10.1137/1.9780898717716 10.1137/1.9780898717716Search in Google Scholar

[33] Chen C.Y., 2011, Extended interval Newton method based on the precise quotient set. Computing 92(4):297–315, doi 10.1007/s00607-011-0145-0 10.1007/s00607-011-0145-0Search in Google Scholar

[34] Rump S.M., 1999, INTLAB - INTerval LABoratory. In: Tibor Csendes (ed), Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht, pp 77-104. 10.1007/978-94-017-1247-7_7Search in Google Scholar

[35] Jaulin L., 2001, Applied Interval Analysis: With Examples in Parameter and State Estimation. Robust Control and Robotics, Springer, London Search in Google Scholar

[36] Hansen E. and Sengupta S., Global constrained optimization using interval analysis. In: Nickel KL (ed), Interval Mathematics, Academic Press, New York, 1980, pp.25 –47. 10.1016/B978-0-12-518850-0.50008-1Search in Google Scholar

[37] Alonso-Arroyo A., Camps A., Park H., Pascual D., Onrubia R. and Martin F., 2014, Retrieval of Significant Wave Height and Mean Sea Surface Level Using the GNSS-R Interference Pattern Technique: Results From a Three-Month Field Campaign. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3198-3209, doi: 10.1109/TGRS.2014.2371540 10.1109/TGRS.2014.2371540Search in Google Scholar

Received: 2016-9-7
Accepted: 2016-10-7
Published Online: 2016-11-28

© 2016 J. Reinking

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.6.2024 from https://www.degruyter.com/document/doi/10.1515/jogs-2016-0006/html
Scroll to top button