Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 27, 2016

Investigating and Modeling the Effect of Laser Intensity and Nonlinear Regime of the Fiber on the Optical Link

  • Kavita Bhatnagar EMAIL logo and S. C. Gupta

Abstract

Understanding the nonlinear characteristics of the optical link is essential to exploit it effectively. Even though various expensive experimental investigations have been conducted in the literature, this paper presents a simulation model to understand the nonlinear relationship that exists between the laser intensity, the nonlinear regime of the fiber and the error probability. Firstly, an analysis model is introduced to observe the numerical relevance between the aforesaid parameters. The analysis results are graphically portrayed to determine the relevance effectively. Secondly, an optical-neural model is adopted based on the feed-forward neural network architecture to relate the parameters mathematically, without hard technical constraints. The model is experimented for the fair estimation of the required laser intensity, which achieves the least desired error probability, when the nonlinear regime of the fiber is known.

References

1. Sung M, Kang S, Shim J, Lee J, Jeong J. DFT-precoded coherent optical OFDM with hermitian symmetry for fiber nonlinearity mitigation. J Lightwave Technol 2012;30(17):2757–63.10.1109/JLT.2012.2206795Search in Google Scholar

2. Wang H, Li Y, Yi X, Kong D, Wu J, Lin J. APSK modulated CO-OFDM system with increased tolerance towards fiber nonlinearity. IEEE Photonics Technol Lett 2012;24(13):1085–7.10.1109/LPT.2012.2194733Search in Google Scholar

3. Desurvire EB. Capacity demand and technology challenges for light wave systems in the next two decades. J Lightwave Technol 2006;24(12):4697–710.10.1109/JLT.2006.885772Search in Google Scholar

4. Essiambre RJ, Kramer G, Winzer PJ, Foschini GJ, Goebel B. Capacity limits of optical fiber networks. J Lightwave Technol 2010;28(4):662–701.10.1109/JLT.2009.2039464Search in Google Scholar

5. Chen X, Shieh W. Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems. Opt Express 2010;18(18):19039–54.10.1364/OE.18.019039Search in Google Scholar PubMed

6. Shieh W, Chen X. Information spectral efficiency and launch power density limits due to fiber nonlinearity for coherent optical OFDM systems. IEEE Photonics J 2011;3(2):158–73.10.1109/JPHOT.2011.2112342Search in Google Scholar

7. Yan W, Tao Z, Dou L, Li L, Oda S, Tanimura T, et al. Low complexity digital perturbation back-propagation, 37th Proceedings of ECOC, Geneva, Switzerland, 2011 Sept, 1–3.10.1364/ECOC.2011.Tu.3.A.2Search in Google Scholar

8. Zhu L, Li G. Nonlinearity compensation using dispersion-folded digital backward propagation. Opt Express 2012;20(13):14362–70.10.1364/OE.20.014362Search in Google Scholar PubMed

9. Slavík R, Parmigiani F, Kakande J, Lundström C, Sjödin M, Andrekson PA, et al. All-optical phase and amplitude regenerator for next generation telecommunications systems. Nat Photonics 2010;4:690–5.10.1038/nphoton.2010.203Search in Google Scholar

10. Watanabe S, Kaneko S, Chikama T. Long-haul fiber transmission using optical phase conjugation. Opt Fiber Technol 1996;2(2):169–78.10.1006/ofte.1996.0018Search in Google Scholar

11. Chowdhury A, Raybon G, Essiambre R-J, Sinsky JH, Adamiecki A, Leuthold J, et al. Compensation of intra channel nonlinearities in 40-Gb/s pseudo linear systems using optical-phase conjugation. J Lightwave Technol 2005;23(1):172–7.10.1109/JLT.2004.840356Search in Google Scholar

12. Jansen SL, van den Borne D, Krummrich PM, Spalter S, Khoe GD, de Waardt H. Long-haul DWDM transmission systems employing optical phase conjugation. IEEE J Sel Topics Quantum Electron 2006;12(4):505–20.10.1109/JSTQE.2006.876621Search in Google Scholar

13. Minzioni P, Pusino V, Cristiani I, Marazzi L, Martinelli M, Langrock C, et al. Optical phase conjugation in phase-modulated transmission systems: Experimental comparison of different nonlinearity compensation methods. Opt Express 2010;18(17):18119–24.10.1364/OE.18.018119Search in Google Scholar PubMed

14. Liu X, Chandrasekhar S, Winzer PJ, Draving S, Evangelista J, Hoffman N, et al. Single coherent detection of a 606-GB/s CO-OFDM signal with 32-QAM subcarrier modulation using 4×80-Gsamples/s ADCs, Proc. European Conference and Exhibition on Optical Communication (ECOC), 19–23 Sep. 2010, 1–3.10.1109/ECOC.2010.5621389Search in Google Scholar

15. Zhou X, Nelson LE, Magill P, Zhu B, Peckham DW. 8 450-GB/s, 50-GHz-spaced, PDM-32QAM transmission over 400 km and one 50 GHz-grid ROADM, Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, Los Angeles, CA, 2011:1–3.10.1364/NFOEC.2011.PDPB3Search in Google Scholar

16. Qian D, Huang M, Ip E, Huang Y, Shao Y, Hu J, et al. 101.7-Tb/s (370294-Gb/s) PDM-128QAM-OFDM transmission over 3 55-km SSMF using Pilot-based phase noise mitigation, Proc. OFC, Los Angeles, CA, 2011:1–3.10.1364/OFC.2011.PDPB5Search in Google Scholar

17. Li A, Amin AA, Chen X, Shieh W. Transmission of 107-GB/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber. Opt Express 2011;19(9):8808–14.10.1364/OE.19.008808Search in Google Scholar PubMed

18. Salsi M, Koebele C, Sperti D, Tran P, Brindel P, Mardoyan H, et al. Transmission at 2 100 GB/s, over two modes of 40 km-long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer, Proc. OFC, Los Angeles, CA, 2011:1–3.10.1364/OFC.2011.PDPB9Search in Google Scholar

19. Ryf R, Randel S, Gnauck AH, Bolle C, Essiambre R, Winzer P, et al. Space-division multiplexing over 10 km of three-mode fiber using coherent 6 6 MIMO processing, Proc. OFC, Los Angeles, CA, 2011:1–3.10.1364/OFC.2011.PDPB10Search in Google Scholar

20. Amin AA, Li A, Chen S, Chen X, Gao G, Shieh W. Dual-LP11 mode 4 4 MIMO-OFDM transmission over a two-mode fiber. Opt Express 2011;19(17):16672–9.10.1364/OE.19.016672Search in Google Scholar PubMed

21. Sakaguchi J, Awaji Y, Wada N, Kanno A, Kawanishi T, Hayashi T, et al. 109-TB/s (7 97 172-GB/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber, Proc. OFC, Los Angeles, CA, 2011:1–3.10.1364/NFOEC.2011.PDPB6Search in Google Scholar

22. Zhu B, Taunay T, Fishteyn M, Liu X, Chandrasekhar S, Yan M, et al. Space-, wavelength-, polarization-division multiplexed transmission of 56-TB/s over a 76.8-km seven-core fiber, Proc. OFC, Los Angeles, CA, 2011:1–3.10.1364/OFC.2011.PDPB7Search in Google Scholar

23. Koebele C, Salsi M, Charlet G, Bigo S. Nonlinear effects in mode-division-multiplexed transmission over few mode optical fiber. IEEE Photonics Technol Lett 2011;23(18):1316–18.10.1109/LPT.2011.2160532Search in Google Scholar

24. Girard S, Baggio J, Bisutti J. 14-MeV Neutron, -Ray, and Pulsed X-Ray Radiation-induced effects on multimode silica-based optical fibers. IEEE Trans Nucl Sci 2006;53(6):3750–7.10.1109/TNS.2006.886222Search in Google Scholar

25. Fernandez AF, Brichard B, O’Keeffe S, Fitzpatrick C, Lewisb E, Vaille J-R, et al. Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors. Fusion Eng Des 2007;83(1):50–9.10.1016/j.fusengdes.2007.05.034Search in Google Scholar

26. Girard S, Kuhnhenn J, Gusarov A, Brichard B, Van Uffelen M, Ouerdane Y, et al. Radiation effects on silica-based optical fibers: recent advances and future challenges. IEEE Trans Nucl Sci 2013;60(3):2015–36.10.1109/TNS.2012.2235464Search in Google Scholar

27. Brichard B, Fernandez AF, Ooms H, Berghmans F, Decreton M, Tomashuk A, et al. Radiation-hardening techniques of dedicated optical fibres used in plasma diagnostic systems in ITER. J Nucl Mater 2004;329–333:1456–60.10.1016/j.jnucmat.2004.04.159Search in Google Scholar

28. Fernandez AF, Brichard B, Berghmans F. In situ measurement of refractive index changes induced by gamma radiation in germanosilicate fibers. IEEE Photonics Technol Lett 2003;15(10):1428–30.10.1109/LPT.2003.818247Search in Google Scholar

29. Sung M, Lee J, Jeong J. DCT-precoding technique in optical fast OFDM for mitigating fiber nonlinearity. IEEE Photonics Technol Lett 2013;25(22):2209–12.10.1109/LPT.2013.2283292Search in Google Scholar

30. Pelusi MD. WDM signal all-optical precompensation of Kerr nonlinearity in dispersion-managed fibers. IEEE Photonics Technol Lett 2013;25(1):71–4.10.1109/LPT.2012.2226440Search in Google Scholar

31. Chen Xi, Li A, Gao G, Al Amin A, Shieh W. Characterization of fiber nonlinearity and analysis of its impact on link capacity limit of two mode fibers. IEEE Photonics J 2012;4(2):455–60.10.1109/JPHOT.2012.2190501Search in Google Scholar

32. Kim Y, Ju S, Jeong S, Kim JY, Lee NH, Jung HK, et al. Gamma-ray radiation effect on non-resonant third-order optical nonlinearity of Germano-silicate optical fiber. IEEE Trans Nucl Sci 2015;62(3):1362–6.10.1109/TNS.2015.2427804Search in Google Scholar

33. Kolgelnik H, Jopson RM, Nelson LE. Polarization-mode dispersion. In: Kaminow IP, Li T, editors. Optical fiber telecommunication IVB systems and impairments. San Diego, CA: Academic, 2002:725–861.Search in Google Scholar

34. Wang J, Kahn JM. Performance of electrical equalizers in optically amplified OOK and DPSK systems. IEEE Photonics Technol Lett 2004 May;16(5):1397-9.10.1109/LPT.2004.826222Search in Google Scholar

35. Warren MS, Pitts W. A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 1943;5(4):115–33.10.1007/BF02478259Search in Google Scholar

36. Rojas R. Neural networks a systematic introduction. Berlin, New York: Springer-Verlag, 1996.Search in Google Scholar

37. Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944;2(2):164–8.10.1090/qam/10666Search in Google Scholar

38. Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 1963;11(2):431–41.10.1137/0111030Search in Google Scholar

39. Laperle C, O’Sullivan M. Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers. J Lightwave Technol 2014;32(4):629–43.10.1109/JLT.2013.2284134Search in Google Scholar

40. Roberts K, Foo S, Moyer M, Hubbard M, Sinclair A, Gaudette J, et al. High capacity transport – 100G and beyond. J Lightwave Technol 2015;33(3):563–78.10.1109/JLT.2014.2358203Search in Google Scholar

Received: 2016-4-12
Accepted: 2016-5-24
Published Online: 2016-7-27
Published in Print: 2017-8-28

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/joc-2016-0041/html
Scroll to top button