Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 8, 2015

5 × 5 25 Gbit/s WDM-MDM

  • Yousef Fazea EMAIL logo and Angela Amphawan

Abstract

Wavelength-division multiplexed-passive optical network (WDM-PON) is a revolutionary high-capacity and scalable broadband access network. This paper capitalizes on Laguerre–Gaussian (LG) modes to reduce modal dispersion and increase data capacity. A data rate of 25 Gbit/s is attained for a multimode fiber link by multiplexing five LG modes on five wavelengths centered at 1,550.12 nm for a distance up to 800 m.

References

1. ZhuangW, ZhuangH, ZhengH, “Study on WDM-PON schemes.” In: 2011 International Conference on Business Computing and Global In-formation, 2011.Search in Google Scholar

2. EssiambreR, KramerG, WinzerPJ, FoschiniGJ, GoebelB. Capacity limits of optical fiber networks. J Lightwave Technol2010;28:662–701.10.1109/JLT.2009.2039464Search in Google Scholar

3. RyfR, SierraA, EssiambreR-J, RandelS, GnauckA, BolleCA, et al. Mode-equalized distributed Raman amplification in 137-km few-mode fiber. In: European Conference and Exposition on Optical Communications, 2011, p. Th. 13. K. 5.10.1364/ECOC.2011.Th.13.K.5Search in Google Scholar

4. InanB, SpinnlerB, FerreiraF, Lobato PoloAP, AdhikariS, SleifferV, et al. Equalizer complexity of mode division multiplexed coherent receivers. In: Optical Fiber Communication Conference, 2012, p. OW3D. 4.10.1364/OFC.2012.OW3D.4Search in Google Scholar

5. AmphawanA. Holographic mode-selective launch for bandwidth enhancement in multimode fiber. Opt Exp2011;19:905665.10.1364/OE.19.009056Search in Google Scholar PubMed

6. StepniakG, MaksymiukL, SiuzdakJ. Increasing multimode fiber transmission capacity by mode selective spatial light phase modulation. In: 36th European Conference on Optical Communications, 2010.10.1109/ECOC.2010.5621465Search in Google Scholar

7. CarpenterJ, WilkinsonTD. Precise modal excitation in multimode fibre for control of modal dispersion and mode-group division multiplexing. In: European Conference and Exposition on Optical Communications, 2011, p. We. 10. P1. 62.10.1364/ECOC.2011.We.10.P1.62Search in Google Scholar

8. ChengN, ZhenxingL, LiuS, EffenbergerF. Gain-clamped semiconductor optical amplifiers for reach extension of coexisted GPON and XG-PON. In: National Fiber Optic Engineers Conference, 2011, p. NTuD7.10.1364/NFOEC.2011.NTuD7Search in Google Scholar

09. ChoiJ, YooM, MukherjeeB. Efficient video-on-demand streaming for broadband access networks. J Opt Commun Networking2010;2:3850.10.1364/JOCN.2.000038Search in Google Scholar

10. CasierK, VerbruggeS, MeersmanR, ColleD, PickavetM, DemeesterP. A clear and balanced view on FTTH deployment costs. In: Proceedings of FITCE Congress, 2008, p. 109.Search in Google Scholar

11. UrataR, LamC, LiuH, JohnsonC. High performance, low cost, colorless ONU for WDM-PON. In: National Fiber Optic Engineers Conference, 2012, p. NTh3E. 4.10.1364/NFOEC.2012.NTh3E.4Search in Google Scholar

12. BobrovsV, SpolitisS, IvanovsG. Comparison of chromatic dispersion compensation techniques for WDM-PON solution. In: 2012 2nd Baltic Congress on Future Internet Communications (BCFIC), 2012, pp. 64–67.10.1109/BCFIC.2012.6217981Search in Google Scholar

13. HanzawaN, SaitohK, SakamotoT, MatsuiT, TomitaS, KoshibaM. Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler. In: Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, 2011, pp. 1–3.10.1364/OFC.2011.OWA4Search in Google Scholar

14. SalsiM, KoebeleC, SpertiD, TranP, BrindelP, MardoyanH, et al. Transmission at 2x100Gbit/s, over two modes of 40km-long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer. In: National Fiber Optic Engineers Conference, 2011, p. PDPB9.10.1364/NFOEC.2011.PDPB9Search in Google Scholar

15. Al-KhafajiH, AljunidS, AmphawanA, FadhilH. Improving spectral efficiency of SAC-OCDMA systems by SPD scheme. IEICE Electron Exp2012;9:182934.10.1587/elex.9.1829Search in Google Scholar

16. Al-KhafajiH, AljunidS, AmphawanA, FadhilH. SOA/SPD-based incoherent SAC-OCDMA system at 9 × 5 Gbit/s. IEICE Electron Exp2013;10:p. 20130044.10.1587/elex.10.20130044Search in Google Scholar

17. HarsteadE, SharpeR. Future fiber-to-the-home bandwidth demands favor time division multiplexing passive optical networks. Commun Mag IEEE2012;50:21823.10.1109/MCOM.2012.6353704Search in Google Scholar

18. KusakabeT, KurakakeT, OyamadaK, FujitaY. Time-division multiplexing method for transmitting digital broadcasts over FTTH. IEICE Commun Exp2013;2:42834.10.1587/comex.2.428Search in Google Scholar

19. Al AminA, LiA, ChenX, ShiehW. Spatial mode division multiplexing for overcoming capacity barrier of optical fibers. In: 2011 16th Optoelectronics and Communications Conference (OECC), 2011, pp. 415–6.Search in Google Scholar

20. AmphawanA. Binary encoded computer generated holograms for temporal phase shifting. Opt Exp2011;19:2308596.10.1364/OE.19.023085Search in Google Scholar PubMed

21. AmphawanA. Binary spatial amplitude modulation of continuous transverse modal electric field using a single lens for mode selectivity in multimode fiber. J Mod Opt2012;59:4609.10.1080/09500340.2011.636486Search in Google Scholar

22. AmphawanA, O’BrienD. Holographic mode field generation for a multimode fiber channel. In: Presented at the Proc. IEEE International Conference on Photonics 2010 (ICP2010), Langkawi, 2010.10.1109/ICP.2010.5604381Search in Google Scholar

23. HanzawaN, SaitohK, SakamotoT, MatsuiT, TomitaS, KoshibaM. Mode-division multiplexed transmission with fiber mode couplers. In: Optical Fiber Communication Conference, 2012, p. OW1D. 4.10.1364/OFC.2012.OW1D.4Search in Google Scholar

24. Al AminA, LiA, ChenS, ChenX, GaoG, ShiehW. Dual-LP 11 mode 4x4 MIMO-OFDM transmission over a two-mode fiber. Opt Exp2011;19:166729.10.1364/OE.19.016672Search in Google Scholar PubMed

25. GilesI, ObeysekaraA, ChenR, GilesD, PolettiF, RichardsonD. Fiber LPG mode converters and mode selection technique for multimode SDM. Photonics Technol Lett IEEE2012;24:19225.10.1109/LPT.2012.2219044Search in Google Scholar

26. FangL, JiaH. Mode add/drop multiplexers of LP 02 and LP 03 modes with two parallel combinative long-period fiber gratings. Opt Exp2014;22:1148897.10.1364/OE.22.011488Search in Google Scholar PubMed

27. LiA, AminAA, ChenX, ChenS, GaoG, ShiehW. Reception of dual-spatial-mode CO-OFDM signal over a two-mode fiber. Lightwave Technol J2012;30:63440.10.1109/JLT.2011.2178817Search in Google Scholar

28. UngB, VaityP, RuschL, MessaddeqY, LaRochelleS. Characterization of optical fibers supporting OAM states using fiber Bragg gratings. In: CLEO: Science and Innovations, 2014, p. SM2N. 4.Search in Google Scholar

2. PanickerRA, KahnJM. Algorithms for compensation of multimode fiber dispersion using adaptive optics. J Lightwave Technol2009;27:57909.10.1109/JLT.2009.2036684Search in Google Scholar

30. PanickerRA, LauAP, WildeJP, KahnJM. Experimental comparison of adaptive optics algorithms in 10-gbit/s multimode fiber systems. J Lightwave Technol2009;27:57839.10.1109/JLT.2009.2036683Search in Google Scholar

31. ShemiraniMB, WildeJP, KahnJM. Adaptive compensation of multimode fiber dispersion by control of launched amplitude, phase, and polarization. J Lightwave Technol2010;28:262739.10.1109/JLT.2010.2058092Search in Google Scholar

32. KaiserT, FlammD, DuparrÚM. Complete modal decomposition for optical fibers using CGH-based correlation filters. Opt Exp2009;17:934756.10.1364/OE.17.009347Search in Google Scholar

33. AmphawanA, O’BrienD. Modal decomposition of output field for holographic mode field generation in a multimode fiber channel. In: 2010 International Conference on Photonics (ICP), 2010, pp. 1–5.10.1109/ICP.2010.5604377Search in Google Scholar

34. JiangZ, MarcianteJR. Precise modal decomposition in multimode optical fibers by maximizing the sum of modal power weights. In: Frontiers in Optics, 2008, p. FMD4.10.1364/FIO.2008.FMD4Search in Google Scholar

35. AmphawanA, MishraV, NisarK, NedniyomB. Real-time holographic backlighting positioning sensor for enhanced power coupling efficiency into selective launches in multimode fiber. J Mod Opt2012;50:174552.10.1080/09500340.2012.739713Search in Google Scholar

36. CarpenterJ, WilkinsonTD. Adaptive enhancement of multimode fibre bandwidth by twin-spot offset launch. In: Conference on Lasers and Electro-Optics/Pacific Rim, 2011, p. C413.10.1109/IQEC-CLEO.2011.6193800Search in Google Scholar

37. CarpenterJ, ThomsenBC, WilkinsonTD. Degenerate mode-group division multiplexing. J Lightwave Technol2012;30:394652.10.1109/JLT.2012.2206562Search in Google Scholar

38. CarpenterJ, WilkinsonTD. Characterization of multimode fiber by selective mode excitation. J Lightwave Technol2012;30:138692.10.1109/JLT.2012.2189756Search in Google Scholar

39. AmphawanA, SammanNM, NedniyomB. Selective excitation of LP01 mode in multimode fiber using solid-core photonic crystal fiber. J Mod Opt2013;60:1675–83.10.1080/09500340.2013.827249Search in Google Scholar

40. AmphawanA, AlabdallehWA.Simulation of properties of the transverse modal electric field of an infinite parabolic multimode fiber. Microwave Opt Lett2012;54:13625.10.1002/mop.26861Search in Google Scholar

Received: 2014-11-28
Accepted: 2015-2-12
Published Online: 2015-7-8
Published in Print: 2015-12-1

©2015 by De Gruyter

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/joc-2014-0091/html
Scroll to top button