Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter October 4, 2023

On the X-ray transform of planar symmetric tensors

  • David Omogbhe EMAIL logo and Kamran Sadiq

Abstract

In this article we characterize the range of the attenuated and non-attenuated X-ray transform of compactly supported symmetric tensor fields in the Euclidean plane. The characterization is in terms of a Hilbert-transform associated with A-analytic maps in the sense of Bukhgeim.

MSC 2020: 30E20; 35J56

Funding source: Austrian Science Fund

Award Identifier / Grant number: P31053-N32

Award Identifier / Grant number: F6801-N36

Funding statement: The work of David Omogbhe and Kamran Sadiq were supported by the Austrian Science Fund (FWF), Project P31053-N32 and by the FWF Project F6801-N36 within the Special Research Program SFB F68 “Tomography Across the Scales”.

References

[1] V. Aguilar, L. Ehrenpreis and P. Kuchment, Range conditions for the exponential Radon transform, J. Anal. Math. 68 (1996), 1–13. 10.1007/BF02790201Search in Google Scholar

[2] E. V. Arbuzov, A. L. Bukhgeĭm and S. G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math. 8 (1998), no. 4, 1–20. Search in Google Scholar

[3] Y. M. Assylbekov, F. Monard and G. Uhlmann, Inversion formulas and range characterizations for the attenuated geodesic ray transform, J. Math. Pures Appl. (9) 111 (2018), 161–190. 10.1016/j.matpur.2017.09.006Search in Google Scholar

[4] G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems 20 (2004), no. 2, 399–418. 10.1088/0266-5611/20/2/006Search in Google Scholar

[5] J. Boman and J.-O. Strömberg, Novikov’s inversion formula for the attenuated Radon transform—a new approach, J. Geom. Anal. 14 (2004), no. 2, 185–198. 10.1007/BF02922067Search in Google Scholar

[6] H. Braun and A. Hauk, Tomographic reconstruction of vector fields, IEEE Trans. Signal Process. 39 (1991), 464–471. 10.1109/78.80830Search in Google Scholar

[7] A. L. Bukhgeim, Inversion Formulas in Inverse Problems, Plenum, New York, 1995. Search in Google Scholar

[8] A. Denisiuk, On range condition of the tensor x-ray transform in n , Inverse Probl. Imaging 14 (2020), no. 3, 423–435. 10.3934/ipi.2020020Search in Google Scholar

[9] E. Y. Derevtsov and V. V. Pickalov, Reconstruction of vector fields and their singularities from ray transform, Numer. Anal. Appl. 4 (2011), 21–35. 10.1134/S1995423911010034Search in Google Scholar

[10] E. Y. Derevtsov and I. Svetov, Tomography of tensor fields in the plane, Eurasian J. Math. Comput. Appl. 3 (2015), no. 2, 24–68. 10.32523/2306-6172-2015-3-2-25-69Search in Google Scholar

[11] D. V. Finch, The attenuated x-ray transform: Recent developments, Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ. 47, Cambridge University, Cambridge (2003), 47–66. Search in Google Scholar

[12] I. M. Gelfand and M. I. Graev, Integrals over hyperplanes of basic and generalized functions, Dokl. Akad. Nauk SSSR 135, 1307–1310; translation in Soviet Math. Dokl. 1 (1960), 1369–1372. Search in Google Scholar

[13] S. Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153–180. 10.1007/BF02391776Search in Google Scholar

[14] S. G. Kazantsev and A. A. Bukhgeim, Singular value decomposition for the 2D fan-beam Radon transform of tensor fields, J. Inverse Ill-Posed Probl. 12 (2004), no. 3, 245–278. 10.1515/1569394042215865Search in Google Scholar

[15] S. G. Kazantsev and A. A. Bukhgeim, Inversion of the scalar and vector attenuated X-ray transforms in a unit disc, J. Inverse Ill-Posed Probl. 15 (2007), no. 7, 735–765. 10.1515/jiip.2007.040Search in Google Scholar

[16] V. P. Krishnan, R. Manna, S. K. Sahoo and V. A. Sharafutdinov, Momentum ray transforms, II: Range characterization in the Schwartz space, Inverse Problems 36 (2020), no. 4, Article ID 045009. 10.1088/1361-6420/ab6a65Search in Google Scholar

[17] P. A. Kuchment and S. Y. L’vin, Range of the Radon exponential transform, Soviet Math. Dokl. 42 (1991), no. 1, 183–184. Search in Google Scholar

[18] D. Ludwig, The Radon transform on euclidean space, Comm. Pure Appl. Math. 19 (1966), 49–81. 10.1002/cpa.3160190105Search in Google Scholar

[19] R. K. Mishra, Full reconstruction of a vector field from restricted Doppler and first integral moment transforms in n , J. Inverse Ill-Posed Probl. 28 (2020), no. 2, 173–184. 10.1515/jiip-2018-0028Search in Google Scholar

[20] F. Monard, Efficient tensor tomography in fan-beam coordinates, Inverse Probl. Imaging 10 (2016), no. 2, 433–459. 10.3934/ipi.2016007Search in Google Scholar

[21] F. Monard, Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms, Inverse Probl. Imaging 12 (2018), no. 2, 433–460. 10.3934/ipi.2018019Search in Google Scholar

[22] N. I. Muskhelishvili, Singular Integral Equations, Dover, New York, 2008. Search in Google Scholar

[23] F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons, Chichester, 1986. 10.1007/978-3-663-01409-6Search in Google Scholar

[24] F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems 17 (2001), no. 1, 113–119. 10.1088/0266-5611/17/1/309Search in Google Scholar

[25] F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, SIAM Monogr. Math. Model. Comput., Society for Industrial and Applied Mathematics, Philadelphia, 2001. 10.1137/1.9780898718324Search in Google Scholar

[26] S. J. Norton, Tomographic reconstruction of 2-D vector fields: Application to flow imaging, Geophys. J. 97 (1989), 161–168. 10.1111/j.1365-246X.1989.tb00491.xSearch in Google Scholar

[27] S. J. Norton, Unique tomographic reconstruction of vector fields using boundary data, IEEE Trans. Image Process. 1 (1992), 406–412. 10.1109/83.148612Search in Google Scholar PubMed

[28] R. G. Novikov, Une formule d’inversion pour la transformation d’un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 12, 1059–1063. 10.1016/S0764-4442(01)01965-6Search in Google Scholar

[29] R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems 18 (2002), no. 3, 677–700. 10.1088/0266-5611/18/3/310Search in Google Scholar

[30] D. Omogbhe and K. Sadiq, An inverse source problem for linearly anisotropic radiative sources in absorbing and scattering medium, Appl. Anal. (2023), 10.1080/00036811.2023.2234387. 10.1080/00036811.2023.2234387Search in Google Scholar

[31] E. Y. Pantyukhina, Description of the image of a ray transformation in the two-dimensional case, Methods for Solving Inverse Problems (in Russian), Akad. Nauk SSSR, Novosibirsk (1990), 80–89, 144. Search in Google Scholar

[32] G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography on surfaces, Invent. Math. 193 (2013), no. 1, 229–247. 10.1007/s00222-012-0432-1Search in Google Scholar

[33] G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography: Progress and challenges, Chinese Ann. Math. Ser. B 35 (2014), no. 3, 399–428. 10.1007/s11401-014-0834-zSearch in Google Scholar

[34] L. Pestov and G. Uhlmann, On characterization of the range and inversion formulas for the geodesic X-ray transform, Int. Math. Res. Not. IMRN 2004 (2004), no. 80, 4331–4347. 10.1155/S1073792804142116Search in Google Scholar

[35] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Sächs. Akad. Wiss. Leipzig 69 (1917), 262–277. Search in Google Scholar

[36] K. Sadiq, O. Scherzer and A. Tamasan, On the X-ray transform of planar symmetric 2-tensors, J. Math. Anal. Appl. 442 (2016), no. 1, 31–49. 10.1016/j.jmaa.2016.04.018Search in Google Scholar

[37] K. Sadiq and A. Tamasan, On the range characterization of the two-dimensional attenuated Doppler transform, SIAM J. Math. Anal. 47 (2015), no. 3, 2001–2021. 10.1137/140984282Search in Google Scholar

[38] K. Sadiq and A. Tamasan, On the range of the attenuated Radon transform in strictly convex sets, Trans. Amer. Math. Soc. 367 (2015), no. 8, 5375–5398. 10.1090/S0002-9947-2014-06307-1Search in Google Scholar

[39] K. Sadiq and A. Tamasan, On the range of the planar X-ray transform on the Fourier lattice of the torus, preprint (2022), https://arxiv.org/abs/2201.10926v2. Search in Google Scholar

[40] K. Sadiq and A. Tamasan, On the range of the X-ray transform of symmetric tensors compactly supported in the plane, Inverse Probl. Imaging 17 (2023), no. 3, 660–685. 10.3934/ipi.2022070Search in Google Scholar

[41] M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Differential Geom. 88 (2011), no. 1, 161–187. 10.4310/jdg/1317758872Search in Google Scholar

[42] T. Schuster, 20 years of imaging in vector field tomography: A review, Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), CRM Ser. 7, Scuola Normale Superiore, Pisa (2008), 389–424. Search in Google Scholar

[43] V. A. Sharafutdinov, A problem of integral geometry for generalized tensor fields on 𝐑 n , Dokl. Akad. Nauk SSSR 286 (1986), no. 2, 305–307. Search in Google Scholar

[44] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 1994. 10.1515/9783110900095Search in Google Scholar

[45] G. Sparr, K. Strå hlén, K. Lindström and H. W. Persson, Doppler tomography for vector fields, Inverse Problems 11 (1995), no. 5, 1051–1061. 10.1088/0266-5611/11/5/009Search in Google Scholar

[46] A. Tamasan, Tomographic reconstruction of vector fields in variable background media, Inverse Problems 23 (2007), no. 5, 2197–2205. 10.1088/0266-5611/23/5/022Search in Google Scholar

Received: 2022-07-08
Revised: 2023-08-03
Accepted: 2023-08-16
Published Online: 2023-10-04

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/jiip-2022-0055/html
Scroll to top button