Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 20, 2020

Numerics of acoustical 2D tomography based on the conservation laws

  • Sergey I. Kabanikhin ORCID logo , Dmitriy V. Klyuchinskiy , Nikita S. Novikov EMAIL logo and Maxim A. Shishlenin ORCID logo

Abstract

We investigate the mathematical modeling of the 2D acoustic waves propagation, based on the conservation laws. The hyperbolic first-order system of partial differential equations is considered and solved by the method of S. K. Godunov. The inverse problem of reconstructing the density and the speed of sound of the medium is considered. We apply the gradient method to reconstruct the parameters of the medium. The gradient of the functional is obtained. Numerical results are presented.

MSC 2010: 65M32; 65N21

Award Identifier / Grant number: 19-11-00154

Funding statement: The work has been supported by RSCF under grant 19-11-00154 “Developing of new mathematical models of acoustic tomography in medicine. Numerical methods, HPC and software”.

References

[1] L. Beilina and M. V. Klibanov, A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem, Inverse Problems 26 (2010), no. 4, Article ID 045012. 10.1088/0266-5611/26/4/045012Search in Google Scholar

[2] L. Beilina and M. V. Klibanov, Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D, J. Inverse Ill-Posed Probl. 18 (2010), no. 1, 85–132. 10.1515/jiip.2010.003Search in Google Scholar

[3] L. Beilina and M. A. Shishlenin, Computational Comparison of Adaptive Hybrid FEM/FDM Method and Gelfand–Levitan–Krein Method for an Inverse Scattering Problem, preprints of Mathematics Department of Basel University (2006). Search in Google Scholar

[4] R. Bürger, A. Coronel and M. Sepúlveda, Numerical solution of an inverse problem for a scalar conservation law modelling sedimentation, Hyperbolic Problems: Theory, Numerics and Applications, Proc. Sympos. Appl. Math. 67, American Mathematical Society, Providence (2009), 445–454. 10.1090/psapm/067.2/2605240Search in Google Scholar

[5] V. A. Burov, V. B. Voloshinov, K. V. Dmitriev and N. V. Polikarpova, Acoustic waves in metamaterials, crystals, and anomalously refracting structures, Adv. Phys. Sci. 54 (2011), 1165–1170. Search in Google Scholar

[6] V. A. Burov, D. I. Zotov and O. D. Rumyantseva, Reconstruction of spatial distributions of sound velocity and absorption in soft biological tissues using model ultrasonic tomographic data, Acoust. Phys. 60 (2014), 479–91. 10.1134/S1063771014040022Search in Google Scholar

[7] V. A. Burov, D. I. Zotov and O. D. Rumyantseva, Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data, Acoust. Phys. 61 (2015), 231–48. 10.1134/S1063771015020013Search in Google Scholar

[8] N. Duric, P. Littrup, C. Li, O. Roy, S. Schmidt, R. Janer, X. Cheng, J. Goll, O. Rama, L. Bey-Knight and W. Greenway, Breast ultrasound tomography: Bridging the gap to clinical practice, Proc. SPIE 8320 (2012), Article ID 83200. 10.1117/12.910988Search in Google Scholar

[9] N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama and C. Glide, Detection of breast cancer with ultrasound tomography: first results with the computed ultrasound risk evaluation (CURE) prototype, Med. Phys. 34 (2007), no. 2, 773–785. 10.1118/1.2432161Search in Google Scholar PubMed

[10] V. M. Filatova, V. V. Nosikova and L. N. Pestov, Application of reverse time migration (RTM) procedure in ultrasound tomography, numerical modeling, Eurasian J. Math. Comp. Appl. 4 (2016), no. 4, 5–13. 10.32523/2306-6172-2016-4-4-5-13Search in Google Scholar

[11] V. M. Filatova, V. V. Nosikova, L. N. Pestov and A. G. Rudnitskii, Breast ultrasound tomography problem, simulation with noisy model, 2018 Days on Diffraction (DD), IEEE Press, Piscataway (2018), 106–111. 10.1109/DD.2018.8553531Search in Google Scholar

[12] S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics (in Russian), Mat. Sb. (N.S.) 47(89) (1959), 271–306. Search in Google Scholar

[13] S. K. Godunov, S. P. Kiselev, I. M. Kulikov and V. I. Mali, Numerical and experimental simulation of wave formation during explosion welding (in Russian), Tr. Mat. Inst. Steklova 281 (2013), no. 1, 16–31; translation in Proc. Steklov Inst. Math. 281 (2013), 12–26. 10.1134/S0081543813040032Search in Google Scholar

[14] S. K. Godunov, A. V. Zabrodin, M. Y. Ivanov, A. N. Kraĭko and G. P. Prokopov, Numerical Solution for Multidimensional Problems of Gas Mechanics, Izdat. “Nauka”, Moscow, 1976. Search in Google Scholar

[15] A. V. Goncharsky and S. Y. Romanov, Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation, Inverse Problems 33 (2017), no. 2, Article ID 025003. 10.1088/1361-6420/33/2/025003Search in Google Scholar

[16] A. V. Goncharsky, S. Y. Romanov and S. Y. Seryozhnikov, Inverse problems of 3D ultrasonic tomography with complete and incomplete range data, Wave Motion 51 (2014), no. 3, 389–404. 10.1016/j.wavemoti.2013.10.001Search in Google Scholar

[17] A. V. Goncharsky, S. Y. Romanov and S. Y. Seryozhnikov, A computer simulation study of soft tissue characterization using low-frequency ultrasonic tomography, Ultrasonics 67 (2016), 136–150. 10.1016/j.ultras.2016.01.008Search in Google Scholar PubMed

[18] S. He and S. I. Kabanikhin, An optimization approach to a three-dimensional acoustic inverse problem in the time domain, J. Math. Phys. 36 (1995), no. 8, 4028–4043. 10.1063/1.530945Search in Google Scholar

[19] H. Holden, F. S. Priuli and N. H. Risebro, On an inverse problem for scalar conservation laws, Inverse Problems 30 (2014), no. 3, Article ID 035015. 10.1088/0266-5611/30/3/035015Search in Google Scholar

[20] R. Jirik, I. Peterlik, N. Ruiter, J. Fousek, R. Dapp, M. Zapf and J. Jan, Sound-speed image reconstruction in sparse-aperture 3D ultrasound transmission tomography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 (2012), no. 2, 254–264. 10.1109/TUFFC.2012.2185Search in Google Scholar PubMed

[21] S. I. Kabanikhin, Definitions and examples of inverse and ill-posed problems, J. Inverse Ill-Posed Probl. 16 (2008), no. 4, 317–357. 10.1515/JIIP.2008.019Search in Google Scholar

[22] S. I. Kabanikhin, K. T. Iskakov, B. B. Sholpanbaev, M. A. Shishlenin and D. K. Tokseit, Development of a mathematical model for signal processing using laboratory data, Bull. Karaganda Univ. Math. 92 (2018), no. 4, 148–157. 10.31489/2018M4/148-157Search in Google Scholar

[23] S. I. Kabanikhin, N. S. Novikov, I. V. Oseledets and M. A. Shishlenin, Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problem, J. Inverse Ill-Posed Probl. 23 (2015), no. 6, 687–700. 10.1515/jiip-2015-0083Search in Google Scholar

[24] S. I. Kabanikhin, D. B. Nurseitov, M. A. Shishlenin and B. B. Sholpanbaev, Inverse problems for the ground penetrating radar, J. Inverse Ill-Posed Probl. 21 (2013), no. 6, 885–892. 10.1515/jip-2013-0057Search in Google Scholar

[25] S. I. Kabanikhin, K. K. Sabelfeld, N. S. Novikov and M. A. Shishlenin, Numerical solution of an inverse problem of coefficient recovering for a wave equation by a stochastic projection methods, Monte Carlo Methods Appl. 21 (2015), no. 3, 189–203. 10.1515/mcma-2015-0103Search in Google Scholar

[26] S. I. Kabanikhin, K. K. Sabelfeld, N. S. Novikov and M. A. Shishlenin, Numerical solution of the multidimensional Gelfand–Levitan equation, J. Inverse Ill-Posed Probl. 23 (2015), no. 5, 439–450. 10.1515/jiip-2014-0018Search in Google Scholar

[27] S. I. Kabanikhin, O. Scherzer and M. A. Shishlenin, Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation, J. Inverse Ill-Posed Probl. 11 (2003), no. 1, 87–109. 10.1515/156939403322004955Search in Google Scholar

[28] S. I. Kabanikhin and M. A. Shishlenin, Quasi-solution in inverse coefficient problems, J. Inverse Ill-Posed Probl. 16 (2008), no. 7, 705–713. 10.1515/JIIP.2008.043Search in Google Scholar

[29] S. I. Kabanikhin and M. A. Shishlenin, Numerical algorithm for two-dimensional inverse acoustic problem based on Gel’fand–Levitan–Krein equation, J. Inverse Ill-Posed Probl. 18 (2010), no. 9, 979–995. 10.1515/jiip.2011.016Search in Google Scholar

[30] H. Kang and K. Tanuma, Inverse problems for scalar conservation laws, Inverse Problems 21 (2005), no. 3, 1047–1059. 10.1088/0266-5611/21/3/015Search in Google Scholar

[31] I. M. Kulikov, N. S. Novikov and M. A. Shishlenin, Mathematical modelling of ultrasound wave propagation in two dimensional medium: Direct and inverse problem, Siberian Elect. Math. Rep. 12 (2015), C219–C228. Search in Google Scholar

[32] V. G. Romanov and S. I. Kabanikhin, Inverse Problems for Maxwell’s Equations, VSP, Utrecht, 1994. 10.1515/9783110900101Search in Google Scholar

[33] S. S. Titarenko, I. M. Kulikov, I. G. Chernykh, M. A. Shishlenin, O. I. Krivorotko, D. A. Voronov and M. Hildyard, Multilevel parallelization: Grid methods for solving direct and inverse problems, Commun. Comput. Inform. Sci. 687 (2016), 118–131. 10.1007/978-3-319-55669-7_10Search in Google Scholar

[34] V. Vasin, Irregular nonlinear operator equations: Tikhonov’s regularization and iterative approximation, J. Inverse Ill-Posed Probl. 21 (2013), no. 1, 109–123. 10.1515/jip-2012-0084Search in Google Scholar

[35] V. V. Vasin, The method of quasi-solutions by Ivanov is the effective method of solving ill-posed problems, J. Inverse Ill-Posed Probl. 16 (2008), no. 6, 537–552. 10.1515/JIIP.2008.028Search in Google Scholar

[36] J. Wiskin, D. Borup, M. Andre, S. Johnson, J. Greenleaf, Y. Parisky and J. Klock, Threedimensional nonlinear inverse scattering: Quantitative transmission algorithms, refraction corrected reflection, scanner design, and clinical results, Proc. Mtgs. Acoust. 19 (2013), Article ID 075001. 10.1121/1.4800267Search in Google Scholar

[37] J. Wiskin, D. Borup, E. Iuanow, J. Klock and M. Lenox, 3-D nonlinear acoustic inverse scattering: Algorithm and quantitative results, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64 (2017), no. 8, 1161–1174. 10.1109/TUFFC.2017.2706189Search in Google Scholar PubMed PubMed Central

Received: 2019-09-12
Revised: 2019-12-11
Accepted: 2019-12-13
Published Online: 2020-02-20
Published in Print: 2020-04-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.5.2024 from https://www.degruyter.com/document/doi/10.1515/jiip-2019-0061/html
Scroll to top button