Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 18, 2020

Deformation detection through the realization of reference frames

  • Nestoras Papadopoulos , Melissinos Paraskevas ORCID logo EMAIL logo , Ioannis Katsafados , Georgios Nikolaidis and Euagelos Anagnostou

Abstract

Hellenic Military Geographical Service (HMGS) has established and measured various networks in Greece which constitute the geodetic infrastructure of the country. One of them is the triangulation network consisting of about 26.000 pillars all over Greece. Classical geodetic measurements that held by the Hellenic Military Geographic Service (HMGS) through the years have been used after adjustment for the state reference frame which materializes the current Hellenic Geodetic Reference System of 1987 (HGRS87). The aforementioned Reference System (RS) is a static one and is in use since 1990. Through the years especially in the era of satellite navigation systems many Global Navigation Satellite System (GNSS) networks have been established. The latest such network materialized by HMGS is ongoing and covers until now more than the 2/3 of the country. It is referenced by International GNSS Service (IGS) permanent stations and consists a local densification IGS08 Reference Frame. Firstly, this gives the opportunity to calculate transformation parameters between the two systems and a statistical analysis of the residuals leads to intermediate conclusions. After that and in conjunction with existing past transformations, tectonic deformations and their directions are concluded. Moreover past GPS observations on the same pillars in compare to the newer ones give also a sense of tectonic displacements. Greece is one of the most tectonically active countries in Europe and the adoption of a modern kinematic or semi-kinematic geodetic datum is a necessity as it should incorporate a deformation model like 3d velocities on the reference frame realization. The detection of geodynamic changes is a continuous need and should be taken into consideration at each epoch.

References

[1] Kahle H.-G., Müller M. V., Mueller S., Veis G., Billiris H., Paradissis D., Drewes H., Kaniuth K., Stuber K., Tremel H., Zerbini S., Corrado G., Verrone G. Monitoring West Hellenic Arc Tectonics and Calabrian Arc Tectonics “WATH A CAT” using the Global Positioning System. In: Smith D., Turcotte D. (Eds.), Contributions of Space Geodesy to Geodynamics: Crustal Dynamics, volume 23 of AGU Geodynamics Series, pp. 417–429, 1993.10.1029/GD023p0417Search in Google Scholar

[2] Müller M. V. Satellite geodesy and geodynamics: Current deformation along the West Hellenic Arc. PhD thesis, Eidgenössische Technische Hochschule ETH, Zürich, Mitteilungen Nr. 57, Institut für Geodäsie und Photogrammetrie, 1996.Search in Google Scholar

[3] Kahle H.-G., Straub C., Reilinger R., McClusky S., King R. W., Hurst K., Veis G., Kastens K., Cross P. The strain rate field in the eastern Mediterranean region, estimated by repeated GPS measurements. Tectonophysics 294, 237–252, 1998.10.1016/S0040-1951(98)00102-4Search in Google Scholar

[4] Cocard M., Kahle H. G., Peter Y., et al. New constraints on the rapid crustal motion of the Aegean region: Recent results inferred from GPS measurements (1993–1998) across the West Hellenic Arc, Greece. Earth Planet Sci Lett 172, 39–47, 1999, doi:10.1016/S0012-821X(99)00185-5.Search in Google Scholar

[5] Briole P., Rigo A., Lyon-Caen H., et al. Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995. J Geophys Res 105, 25605. 2000, doi:10.1029/2000JB900148.Search in Google Scholar

[6] Kahle H.-G., Cocard M., Peter Y., Geiger A., Reilinger R., Barka A., Veis G. GPS-derived strain rate field within the boundary zones of the Eurasian, African and Arabian Plates. J. Geophys. Res. 105 (B10), 23353–23370, 2000.10.1029/2000JB900238Search in Google Scholar

[7] Peter Y. Present-day crustal dynamics in the Adriatic-Aegean plate boundary zone inferred from continuous GPS-measurements. Mitteilungen Nr. 71, Institut für Geodäsie und Photogrammetrie, ETH Zürich, 2001.Search in Google Scholar

[8] Hollenstein C., Müller M. D., Geiger A., Kahle H. G. Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003. Tectonophysics 449 (1–4), 17–40, 2007, doi:10.1016/j.tecto.2007.12.006.Search in Google Scholar

[9] Bitharis S., Fotiou A., Pikridas C., Rossikopoulos D. A New Velocity Field of Greece Based on Seven Years (2008–2014) Continuously Operating GPS Station Data. In: Freymueller J. T., Sánchez L. (Eds.), International Symposium on Earth and Environmental Sciences for Future Generations, volume 147 of International Association of Geodesy Symposia, Springer, Cham Link, 2016.10.1007/1345_2016_230Search in Google Scholar

[10] Papazachos B. C. Seismicity of the Aegean and the surrounding area, Tectonophysics 178, 287–308, 1990.10.1016/0040-1951(90)90155-2Search in Google Scholar

[11] Takos I. New adjustment of Greek geodetic networks. Journal of the Hellenic Military Geographic Service 36, 15–30, 1989 (in Greek).Search in Google Scholar

[12] Veis G. Technika Chronika. Technical Chamber of Greece, 1995.Search in Google Scholar

[13] Boucher C., Altamimi Z. ITRF89 and other realizations of the IERS Terrestrial Reference System for 1989 (IERS Technical Note; 6). Paris: Central Bureau of IERS – Observatoire de Paris, 1991. ii, 137 p.10.1007/978-1-4684-6399-6_19Search in Google Scholar

[14] Wilson P. An Introduction to the Working group of European Geo-scientists for the Establishment of Networks for Earth-science Research (WEGENER). J. Geodynamics 25 (3–4), 177–178, 1996.10.1016/S0264-3707(97)00031-8Search in Google Scholar

[15] Beutler G., Bock H., Brockmann E., Dach R., Fridez P., Gurtner W., Hugentobler U., Ineichen D., Johnson J., Meindl M., Mervart L., Rothacher M., Schaer S., Springer T., Weber R. In: Hugentobler U., Schaer S., Fridez P. (Eds.), Bernese GPS Software Version 4.2. Astronomical Institute, University of Berne, Switzerland, 2001.Search in Google Scholar

[16] Columbus Software User’s Manual, Best-Fit Computing, Beaverton, Oregon, 1996.Search in Google Scholar

[17] Boucher C., Altamimi Z., Sillard P. Results and Analysis of the ITRF96 (IERS Technical Note; 24). Paris: Central Bureau of IERS – Observatoire de Paris, 1998. ii, 167 p.Search in Google Scholar

[18] Anagnostou E. National Report of Greece to EUREF, EUREF Symposium Proceedings, 6–9 June 2007, London, UK, 2007.Search in Google Scholar

[19] Dach R., Hugentobler U., Fridez P., Meindl M. Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Switzerland, 2007.Search in Google Scholar

[20] Herring T. A., King R. W., Floyd M. A., McClusky S. C. Introduction to GAMIT/GLOBK. Department of Earth, Atmospheric, and Planetary Sciences, Institute of Technology, Massachusetts, 2018.Search in Google Scholar

[21] Lyard F., Lefèvre F., Letellier T., Francis O. Modelling the global ocean tides: a modern insight from FES2004. Ocean Dynamics, 56, 394–415, 2006.10.1007/s10236-006-0086-xSearch in Google Scholar

[22] Kouba J. Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1). Journal of Geodesy 82, 193–205, 2008, doi:10.1007/s00190-007-0170-0.Search in Google Scholar

[23] P. Rebischung, J. Griffiths, J. Ray, R. Schmid, X. Collilieux, B. Garayt 2012. IGS08: the IGS realization of ITRF2008. GPS Solut. 16 (4), 483–494, October 2012, doi:10.1007/s10291-011-0248-2.Search in Google Scholar

[24] Trimble Total Control™, Version 2.73, Revision A, July 2003, Trimble Navigation Limited Geomatics & Engineering Division, 5475 Kellenburger Road, Dayton, Ohio 45424-1099, U.S.A.Search in Google Scholar

[25] Laurent J., Menant A., Sternai P., Rabillard A., Arbaret L., et al. The geological signature of a slab tear below the Aegean. Tectonophysics 659, 166–182, 2015, doi:10.1016/j.tecto.2015.08.004, Elsevier, HAL:insu-01187096, 2016.Search in Google Scholar

[26] Tiberi C., Lyon-Caen H., Hatzfeld D., Achauer U., Karagianni E., Kiratzi A., Louvari E., Panagiotopoulos D., Kassaras I., Kaviris G., Makropoulos K., Papadimitriou P. Crustal and upper mantle structure beneath the Corinth rift (Greece) from a teleseismic tomography study. J. Geophys. Res. 105 (B12), 28159–28171, 2000.10.1029/2000JB900216Search in Google Scholar

[27] Kassaras I., Louis F., Makropoulos K., Magganas A., Hatzfeld D. Elastic-Anelastic Properties of the Aegean Lithosphere-Asthenosphere Inferred from Long Period Rayleigh Waves. In: J. E. Anderson R. W. Coates (Eds.), The Lithosphere: Geochemistry, Geology and Geophysics, ISBN:978-1-60456-903-2, Nova Publishers, N.Y., USA, 383 p., 2009.Search in Google Scholar

[28] Karakonstantis A., Papadimitriou P. Local earthquake tomography in the broader area of western Corinth gulf. Bulletin of the Geological Society of Greece 50 (3), 1143–1152, 2017.10.12681/bgsg.11820Search in Google Scholar

[29] Chousianitis K., Ganas A., Evangelidis C. Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release, 2015. https://doi.org/10.1002/2014JB011762.10.1002/2014JB011762Search in Google Scholar

[30] Floyd M. A., Billiris H., Paradissis D., et al. A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. J Geophys Res. Solid Earth 115, 1–25, 2010, doi:10.1029/2009JB007040.Search in Google Scholar

[31] Kreemer C., Holt W. E., Hains A. J. An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int. 154, 8–34, 2003.10.1046/j.1365-246X.2003.01917.xSearch in Google Scholar

[32] Kreemer C., Blewitt G., Klein E. C. A geodetic plate motion and global strain rate model. Geochemistry Geophys Geosystems 15, 3849–3889, 2014, doi:10.1002/2014GC005407.Search in Google Scholar

[33] McClusky S., Balassanian S., Barka A., Demir C., Ergintav S., Georgiev I., Gurkan O., Hamburger M., Hurst K., Kahle H., Kastens K., Kekelidze G., King R., Kotzev V., Lenk O., Mahmoud S., Mishin A., Nadariya M., Ouzounis A., Paradissis D., Peter Y., Prilepin M., Reilinger R., Sanli I., Seeger H., Tealeb A., Toksöz M. N., Veis G. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105 (B3), 5695, 2000, doi:10.1029/1999JB900351.Search in Google Scholar

[34] McKenzie D. Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal of the Royal Astronomical Society 55, 217–254, 1978.10.1111/j.1365-246X.1978.tb04759.xSearch in Google Scholar

[35] Caputo R., Pavlides S. The Greek Database of Seismogenic Sources (GreDaSS), version 2.0.0: A compilation of potential seismogenic sources (Mw > 5.5) in the Aegean Region, 2013, http://gredass.unife.it/, doi:10.15160/unife/gredass/0200.Search in Google Scholar

[36] Veis G. Reference Systems and the realizations of HGRS87. In: Digital Cartography, Photogrammetry, Remote Sensing and Cutting Edge Technologies, Technical Chamber of Greece, 1994.Search in Google Scholar

[37] Boncori J. P. M., Papoutsis I., Pezzo G., Tolomei C., Atzori S., Ganas A., et al. The February 2014 Cephalonia Earthquake (Greece): 3D Deformation Field and Source Modeling from Multiple SAR Techniques. Seismological Research Letters 86 (1), January/February 2015, doi:10.1785/0220140126.Search in Google Scholar

[38] Boucer C., Altamimi Z. Memo v.8: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign, 2011.Search in Google Scholar

[39] Papadopoulos N. Processing of satellite observations in Megisti island using GAMIT/GLOBK. Master diploma thesis, NTUA, School of Rural and Survey Engineering, 2015.Search in Google Scholar

[40] Bitharis S. et al. Assessing a New Velocity Field in Greece towards a New Semi-Kinematic Datum. Survey Review 51 (368), 450–459, 2019, doi:10.1080/00396265.2018.1479937.Search in Google Scholar

[41] Stanaway R. Regional and national reference frames. Reference Frames in Practical Manual, Commission 5 Working Group 5.2 Reference Frame, FIG Publication No. 64, 2014.Search in Google Scholar

[42] Bitharis S., Pikridas C., Fotiou A. A methodology investigation for a semi-kinematic datum realization in Greece combining geodetic and geological data. In: 4th Joint International Symposium on Deformation Monitoring (JISDM), 2019.Search in Google Scholar

[43] Sakkas V, Lagios E. Fault modelling of the early-2014 ∼ M6 Earthquakes in Cephalonia Island (W. Greece) based on GPS measurements. Tectonophysics 644, 184–196, 2015, doi:10.1016/j.tecto.2015.01.010.Search in Google Scholar

[44] Lagios E., Sakkas V., Papadimitriou P., Damiata B. N., Parcharidis I., Chousianitis K., Vassilopoulou S. Crustal deformation in the Central Ionian Islands (Greece): results from DGPS and DInSAR analyses (1995–2006). Tectonophysics 444, 119–145, 2007, doi:10.1016/j.tecto.2007.08.018.Search in Google Scholar

[45] Fabien Y. P. Ing. Topo. Dipl. EPF, Present-day crustal dynamics in the Adriatic-Aegean plate boundary zone inferred from continuous GPS-measurements, A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Technical Sciences, Zurich, 2000.Search in Google Scholar

[46] Haslinger F., E. Kissling, J. Ansorge, D. Hatzfeld, E. Papadimitriou, V. Karakostas, K. Makropoulos, H. G. Kahle, Y. Peter 3D crustal structure from local earthquake tomography around the Gulf of Arta (Ionian region, NW Greece). Tectonophysics 304, 201–218, 1999, doi:10.1016/S0040-1951(98)00298-4.Search in Google Scholar

[47] Hollenstein C., M. D. Müller, A. Geiger, H. G. Kahle Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003. Tectonophysics 449 (1/4), 17–40, 2008, doi:10.1016/j.tecto.2007.12.006.Search in Google Scholar

[48] Briole P., Elias P., Parcharidis I., Bignami C., Benekos G., Samsonov G., Kyriakopoulos C., Stramondo S., Chamot-Rooke N., Drakatou M. L., Drakatos G. The seismic sequence of January–February 2014 at Cephalonia Island (Greece): constraints from SAR interferometry and GPS. Geophys J Int 203 (3), 1528–1540, 2015, doi:10.1093/gji/ggv353.Search in Google Scholar

[49] Lagios E., Papadimitriou P., Novali F., Sakkas V., Fumagalli F., Vlachou K., Del Conte S. Combined seismicity pattern analysis, DGPS and PSInSAR studies in the broader area of Cephalonia (Greece). Tectonophysics 524 (525), 43–58, 2012, doi:10.1016/j.tecto.2011.12.015.Search in Google Scholar

[50] Mavroulis S., Carydis P., Alexoudi V., Grambas A., Lekkas E. The January/February 2014 Cephalonia (Ionian Sea, Western Greece) earthquake: Tectonics and seismological Aspects. 16th World Conference on Earthquake, paper No 13, 16WCEE 2017, Santiago Chile, January 9th to 13th 2017.Search in Google Scholar

[51] Papadopoulos N., Paraskevas M., Katsafados I., Nikolaidis G., Anagnwstou E. Deformation detection through the realization of reference frames. Conference: JISDM 2019, May 2019.Search in Google Scholar

[52] Papadopoulos N., Paraskevas M., Katsafados I., Nikolaidis G. Calculating a geoid model for Greece using gravity and GPS observations. Conference: JISDM 2019, May 2019, doi:10.13140/RG.2.2.22623.71841/1.Search in Google Scholar

Received: 2019-10-29
Accepted: 2019-12-26
Published Online: 2020-01-18
Published in Print: 2020-04-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.6.2024 from https://www.degruyter.com/document/doi/10.1515/jag-2019-0056/html
Scroll to top button