Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 2, 2021

Co-processing of hydrodeoxygenation and hydrodesulfurization of phenol and dibenzothiophene with NiMo/Al2O3–ZrO2 and NiMo/TiO2–ZrO2 catalysts

  • Jesús Andrés Tavizón Pozos , Gerardo Chávez Esquivel ORCID logo EMAIL logo , Ignacio Cervantes Arista , José Antonio de los Reyes Heredia and Víctor Alejandro Suárez Toriello

Abstract

The influence of Al2O3–ZrO2 and TiO2–ZrO2 supports on NiMo-supported catalysts at a different sulfur concentration in a model hydrodeoxygenation (HDO)-hydrodesulfurization (HDS) co-processing reaction has been studied in this work. A competition effect between phenol and dibenzothiophene (DBT) for active sites was evidenced. The competence for the active sites between phenol and DBT was measured by comparison of the initial reaction rate and selectivity at two sulfur concentrations (200 and 500 ppm S). NiMo/TiO2–ZrO2 was almost four-fold more active in phenol HDO co-processed with DBT than NiMo/Al2O3–ZrO2 catalyst. Consequently, more labile active sites are present on NiMo/TiO2–ZrO2 than in NiMo/Al2O3–ZrO2 confirmed by the decrease in co-processing competition for the active sites between phenol and DBT. DBT molecules react at hydrogenolysis sites (edge and rim) preferentially so that phenol reacts at hydrogenation sites (edge and edge). However, the hydrogenated capacity would be lost when the sulfur content was increased. In general, both catalysts showed similar functionalities but different degrees of competition according to the highly active NiMoS phase availability. TiO2–ZrO2 as the support provided weaker metal-support interaction than Al2O3–ZrO2, generating a larger fraction of easily reducible octahedrally coordinated Mo- and Ni-oxide species, causing that NiMo/TiO2–ZrO2 generated precursors of MoS2 crystallites with a longer length and stacking but with a higher degree of Ni-promotion than NiMo/Al2O3–ZrO2 catalyst.


Corresponding author: Gerardo Chávez Esquivel, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, C.P. 02200, Azcapotzalco, Ciudad de México, Mexico; and Instituto de Física, Universidad Nacional Autónoma de México, Cuidad Universitaria, C.P. 20364, Coyoacán, Ciudad de México, Mexico, E-mail:

Acknowledgments

J.A.T.-P and V.A.S.-T. thank the Cátedras-CONACYT program (project 216 and 965). All authors thank J. Torres-Cervantes, E. Martínez-Niño and P. J. Romero-Bustamante chemical engineering students of the Universidad Autónoma Metropolitana-Iztapalapa, for support in the co-processing reactions.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Al-Sabawi, M., and J. Chen. 2012. “Hydroprocessing of Biomass-Derived Oils and Their Blends with Petroleum Feedstocks: A Review.” Energy & Fuels 26: 5373–99, https://doi.org/10.1021/ef3006405.Search in Google Scholar

Badawi, M., S. Cristol, J. F. Paul, and E. Payen. 2009. “DFT Study of Furan Adsorption over Stable Molybdenum Sulfide Catalyst under HDO Conditions.” Comptes Rendus Chimie 12: 754–61, https://doi.org/10.1016/j.crci.2008.10.023.Search in Google Scholar

Barrera, M. C., M. Viniegra, J. Escobar, M. Vrinat, J. A. de los Reyes, F. Murrieta, and J. García. 2004. “Highly Active MoS2 on Wide-Pore ZrO2-TiO2 Mixed Oxides.” Catalysis Today 98: 131–9, https://doi.org/10.1016/j.cattod.2004.07.027.Search in Google Scholar

Baston, E. P., A. B. França, A. V. da S. Neto, and E. A. Urquieta-González. 2015. “Incorporation of the Precursors of Mo and Ni Oxides Directly into the Reaction Mixture of Sol–Gel Prepared γ-Al2O3-ZrO2 Supports-Evaluation of the Sulfided Catalysts in the Thiophene Hydrodesulfurization.” Catalysis Today 246: 184–90, https://doi.org/10.1016/j.cattod.2014.10.035.Search in Google Scholar

Blanchard, P., C. Lamonier, A. Griboval, and E. Payen. 2007. “New Insight in the Preparation of Alumina Supported Hydrotreatment Oxidic Precursors: A Molecular Approach.” Applied Catalysis A: General 322: 33–45, https://doi.org/10.1016/j.apcata.2007.01.018.Search in Google Scholar

Breysse, M., P. Afanasiev, C. Geantet, and M. Vrinat. 2003. “Overview of Support Effects in Hydrotreating Catalysts.” Catalysis Today 86: 5–16, https://doi.org/10.1016/s0920-5861(03)00400-0.Search in Google Scholar

Bui, V. N., G. Toussaint, D. Laurenti, C. Mirodatos, and C. Geantet. 2009. “Co-processing of Pyrolisis Bio-Oils and Gas Oil for New Generation of Bio-Fuels: Hydrodeoxygenation of Guaïacol and SRGO Mixed Feed.” Catalysis Today 143: 172–8, https://doi.org/10.1016/j.cattod.2008.11.024.Search in Google Scholar

Chavez-Esquivel, G., J. C. García-Martínez, J. A. de los Reyes, V. A. Suárez-Toriello, M. A. Vera-Ramírez, and L. Huerta. 2019. “The Influence of Al2O3 Content on Al2O3-ZrO2 Composite-Textural Structural and Morphological Studies.” Materials Research Express 6 (10): 1–12, https://doi.org/10.1088/2053-1591/ab352d.Search in Google Scholar

Climent, M. J., A. Corma, and S. Iborra. 2014. “Conversion of Biomass Platform Molecules into Fuel Additives and Liquid Hydrocarbon Fuels.” Green Chemistry 16: 516–47, https://doi.org/10.1039/c3gc41492b.Search in Google Scholar

Damyanova, S., L. Petrov, M. A. Centeno, and P. Grange. 2002. “Characterization of Molybdenum Hydrodesulfurization Catalysts Supported on ZrO2-Al2O3 and ZrO2-SiO2 Carriers.” Applied Catalysis A: General 224: 271–84, https://doi.org/10.1016/s0926-860x(01)00849-3.Search in Google Scholar

Dhar, A., A. Dutta, C. O. Castillo-Araiza, V. A. Suárez-Toriello, D. Ghosh, and U. Raychaudhuri. 2016. “One-Pot Isomerization of N-Alkanes by Super Acidic Solids: Sulfated Aluminum-Zirconium Binary Oxides.” International Journal of Chemical Reactor Engineering 14 (3): 795–807, https://doi.org/10.1515/ijcre-2015-0052.Search in Google Scholar

Elliott, D. C. 2007. “Historical Developments in Hydroprocessing Bio-Oils.” Energy & Fuels 21: 1792–815, https://doi.org/10.1021/ef070044u.Search in Google Scholar

Escobar, J., M. C. Barrera, J. A. de los Reyes, M. A. Cortés, V. Santes, E. Gómez, and J. G. Pacheco. 2008. “Effect of Mo and Co Loading in HDS Catalysts Supported on Solvo-Thermally Treated ZrO2-TiO2 Mixed Oxides.” Catalysis Today 133–135: 282–91, https://doi.org/10.1016/j.cattod.2007.12.051.Search in Google Scholar

Escobar, J., J. A. de Los Reyes, C. A. Ulín, and M. C. Barrera. 2013. “Highly Active Sulfided CoMo Catalysts Supported on (ZrO2-TiO2)/Al2O3 Ternary Oxides.” Materials Chemistry and Physics 143: 213–22, https://doi.org/10.1016/j.matchemphys.2013.08.054.Search in Google Scholar

Escobar, J., J. A. De Los Reyes, T. Viveros, M. Valle-Orta, and M. C. Barrera. 2015. “Compensation in the Isopropyl Alcohol Dehydration over Sol-Gel Al2O3-TiO2 Oxides: Effect of Calcining Temperature.” Fuel 149: 109–17, https://doi.org/10.1016/j.fuel.2014.09.016.Search in Google Scholar

Furimsky, E. 2013. “Hydroprocessing Challenges in Biofuels Production.” Catalysis Today 217: 13–56, https://doi.org/10.1016/j.cattod.2012.11.008.Search in Google Scholar

Galiasso-Tailleur, R. E., and O. Casanova-Caris. 2007. “Low Emission Using Oxidized Diesel.” International Journal of Chemical Reactor Engineering 5 (1): 1–16, https://doi.org/10.2202/1542-6580.1525.Search in Google Scholar

Gulicovski, J. J., L. S. Čerović, and S. K. Milonjić. 2008. “Point of Zero Charge and Isoelectric Point of Alumina.” Materials and Manufacturing Processes 23: 615–9, https://doi.org/10.1080/10426910802160668.Search in Google Scholar

Gutiérrez, O. Y., and T. Klimova. 2011. “Effect of the Support on the High Activity of the (Ni)Mo/ZrO2-SBA-15 Catalyst in the Simultaneous Hydrodesulfurization of DBT and 4,6-DMDBT.” Journal of Catalysis 281: 50–62, https://doi.org/10.1016/j.jcat.2011.04.001.Search in Google Scholar

Honkela, M. L., T. R. Viljava, A. Gutierrez, and A. O. I. Krause. 2010. “Chapter 11 “Hydrotreating for Bio-Oil Upgrading.” In Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, 288–306. The Royal Society of Chemistry. https://doi.org/10.1039/9781849732260-00288.Search in Google Scholar

Horsley, J. A., I. E. Wachs, J. M. Brown, G. H. Via, and F. D. Hardcastle. 1987. “Structure of Surface Tungsten Oxide Species in the WO3/Al2O3 Supported Oxide System from X-Ray Absorption Near-Edge Spectroscopy and Raman Spectroscopy.” Journal of Physical Chemistry 91 (15): 4014–20, https://doi.org/10.1021/j100299a018.Search in Google Scholar

Hu, D., Y. Li, J. Mei, G. Wang, C. Xiao, C. Liu, Q. Meng, H. Li, S. Fu, and A. Duan. 2020. “High-dispersed Ni-Mo-S Active Phases within Hierarchical Pore Materials by Introducing the Cationic Protective Shell during the Impregnation Process for Hydrodesulfurization.” Fuel 263: 1–10, https://doi.org/10.1016/j.fuel.2019.116701.Search in Google Scholar

Kohler, S. D., J. G. Ekerdt, D. S. Kim, and I. E. Wachs. 1992. “Relationship between Structure and Point of Zero Surface Charge for Molybdenum and Tungsten Oxides Supported on Alumina.” Catalysis Letters 16: 231–9, https://doi.org/10.1007/bf00764335.Search in Google Scholar

Kosmulski, M. 2002a. “The Significance of the Points of Zero Charge of Zirconium (Hydr)Oxide Reported in the Literature.” Journal of Dispersion Science and Technology 23: 529–38, https://doi.org/10.1081/dis-120014021.Search in Google Scholar

Kosmulski, M. 2002b. “The Significance of the Difference in the Point of Zero Charge between Rutile and Anatase.” Advances in Colloid and Interface Science 99: 255–64, https://doi.org/10.1016/s0001-8686(02)00080-5.Search in Google Scholar

Liu, X., and R. E. Truitt. 1997. “DRFT-IR Studies of the Surface of γ-Alumina.” Journal of the American Chemical Society 119 (41): 9856–60, https://doi.org/10.1021/ja971214s.Search in Google Scholar

Luck, F. 1991. “A Review of Support Effects on the Activity and Selectivity of Hydrotreating Catalysts.” Bulletin des Sociétés Chimiques Belges 100 (11–12): 781–800.10.1002/bscb.19911001102Search in Google Scholar

Maity, S. K., M. S. Rana, S. K. Bej, J. Ancheyta-Juárez, G. Murali Dhar, and T. S. R. Prasada Rao. 2001. “TiO2-ZrO2 Mixed Oxide as a Support for Hydrotreating Catalyst.” Catalysis Letters 72 (1–2): 115–19, https://doi.org/10.1023/a:1009045412926.10.1023/A:1009045412926Search in Google Scholar

Malaibari, Z. O., E. Croiset, A. Amin, and W. Epling. 2015. “Effect of Interactions between Ni and Mo on Catalytic Properties of a Bimetallic Ni-Mo/Al2O3 Propane Reforming Catalyst.” Applied Catalysis A: General 490: 80–92, https://doi.org/10.1016/j.apcata.2014.11.002.Search in Google Scholar

Manrıquez, M. E., T. López, R. Gómez, and J. Navarrete. 2004. “Preparation of TiO2-ZrO2 Mixed Oxides with Controlled Acid-Basic Properties.” Journal of Molecular Catalysis A: Chemical 220 (2): 229–37.10.1016/j.molcata.2004.06.003Search in Google Scholar

Massoth, F. E., P. Politzer, M. C. Concha, J. S. Murray, J. Jakowski, and J. Simons. 2006. “Catalytic Hydrodeoxygenation of Methyl-Substituted Phenols: Correlations of Kinetic Parameters with Molecular Properties.” Journal of Physical Chemistry B 110 (29): 14283–91, https://doi.org/10.1021/jp057332g.Search in Google Scholar

Melero, J. A., J. Iglesias, and A. Garcia. 2012. “Biomass as Renewable Feedstock in Standard Refinery Units. Feasibility, Opportunities and Challenges.” Energy & Environmental Science 5: 7393–420, https://doi.org/10.1039/c2ee21231e.Search in Google Scholar

Platanitis, P., G. D. Panagiotou, K. Bourikas, C. Kodulis, and A. Lycourghiotis. 2014. “Hydrodeoxigenation of Phenol over Hydrotreatment Catalysts in Their Reduced and Sulfided States.” The Open Catalysis Journal 7: 18–25, https://doi.org/10.2174/1876214x01407010018.Search in Google Scholar

Pomeroy, B., T. Doxtator, J. E. Herrera, and D. Pjontek. 2019. “Effect of Ni Reducibility on Anisole Hydrodeoxygenation Activity in the La-Ni/γ-Al2O3 Catalytic System.” International Journal of Chemical Reactor Engineering 18 (2): 1–14.10.1515/ijcre-2019-0066Search in Google Scholar

Popov, A., E. Kondratieva, J. M. Goupil, L. Mariey, P. Bazin, J. P. Gilson, A. Travert, and F. Maugé. 2010. “Bio-oils Hydrodeoxygenation: Adsorption of Phenolic Molecules on Oxidic Catalyst Supports.” Journal of Physical Chemistry C 114 (37): 15661–70, https://doi.org/10.1021/jp101949j.Search in Google Scholar

Ramírez, J. 1989. “Hydrodesulfurization Activity and Characterization of Sulfided Molybdenum and Cobalt-Molybdenum Catalyst.” Applied Catalysis 52: 211–24, https://doi.org/10.1016/s0166-9834(00)83385-0.Search in Google Scholar

Ramírez, J., G. Macías, L. Cedeño, A. Gutiérrez-Alejandre, R. Cuevas, and P. Castillo. 2004. “The Role of Titania in Supported Mo, CoMo, NiMo, and NiW Hydrodesulfurization Catalysts: Analysis of Past and New Evidences.” Catalysis Today 98: 19–30, https://doi.org/10.1016/j.cattod.2004.07.050.Search in Google Scholar

Romero-Toledo, R., M. Bravo-Sanchez, G. Rangel-Porras, R. Fuentes-Ramirez, A. Perez-Larios, A. Medina-Ramirez, and M. Martinez-Rosales. 2018. “Effect of Mg as Impurity on the Structure of Mesoporous γ-Al203: Efficiency as Catalytic Support in HDS of DBT.” International Journal of Chemical Reactor Engineering 16 (11): 1–16, https://doi.org/10.1515/ijcre-2017-0141.Search in Google Scholar

Ryymin, E. M., M. L. Honkela, T. R. Viljava, and A. O. I. Krause. 2010. “Competitive Reactions and Mechanisms in the Simultaneous HDO of Phenol and Methyl Heptanoate over Sulfided NiMo/γ-Al2O3.” Applied Catalysis A: General 389: 114–21, https://doi.org/10.1016/j.apcata.2010.09.010.Search in Google Scholar

Saito, Y., C. Kaito, and T. Naiki. 1986. “Structure of Thin Amorphous MoO3 Films Prepared by Vacuum-Deposition.” Journal of Crystal Growth 79 (1–3): 436–42, https://doi.org/10.1016/0022-0248(86)90474-4.Search in Google Scholar

Salerno, P., S. Mendioroz, and A. López Agudo. 2004. “Al-pillared Montmorillonite-Based NiMo Catalysts for HDS and HDN of Gas Oil: Influence of the Method and Order of Mo and Ni Impregnation.” Applied Catalysis A: General 259 (1–8): 17–28, https://doi.org/10.1016/j.apcata.2003.09.019.Search in Google Scholar

Sakashita, Y. 2001. “Effects of Surface Orientation and Crystallinity of Alumina Supports on the Microsrtuctures of Molybdenum Oxides and Sulfides.” Surface Science 489: 45–8, https://doi.org/10.1016/s0039-6028(01)01127-x.Search in Google Scholar

Şenol, O. İ., T. R. Viljava, and A. O. I. Krause. 2005. “Hydrodeoxygenation of Methyl Esters on Sulfided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 Catalysts.” Catalysis Today 100: 331–5.10.1016/j.cattod.2004.10.021Search in Google Scholar

Şenol, O. İ., E. M. Ryymin, T. R. Viljava, and A. O. I. Krause. 2007. “Effect of Hydrogen Sulfide on the Hydrodeoxygenation of Aromatic and Aliphatic Oxygenates on Sulfided Catalysts.” Journal of Molecular Catalysis A: Chemical 277: 107–12.10.1016/j.molcata.2007.07.033Search in Google Scholar

Shimada, H. 2003. “Morphology and Orientation of MoS2 Clusters on Al2O3 and TiO2 Supports and Their Effect on Catalytic Performance.” Catalysis Today 86: 17–29, https://doi.org/10.1016/s0920-5861(03)00401-2.Search in Google Scholar

Stampfl, S. R., Y. Chen, J. A. Dumesic, C. Niu, and C. G. HillJr. 1987. “Interactions of Molybdenum Oxide with Various Oxide Supports: Calcination of Mechanical Mixtures.” Journal of Catalysis 105: 445–54, https://doi.org/10.1016/0021-9517(87)90072-8.Search in Google Scholar

Stanislaus, A., A. Marafi, and M. S. Rana. 2010. “Recent Advances in the Science and Technology of Ultra Low Sulfur Diesel (ULSD) Production.” Catalysis Today 153 (1–2): 1–68, https://doi.org/10.1016/j.cattod.2010.05.011.Search in Google Scholar

Stencel, J. M. 1989. Raman Spectroscopy for Catalysis, 1st ed. Springer.Search in Google Scholar

Takeshita, T., R. Ohnishi, and K. Tanabe. 1974. “Recent Survey of Catalysis by Solid Metal Sulfates.” Journal Catalysis Reviews Science and Engineering 8 (1): 29–63, https://doi.org/10.1080/01614947408071856.Search in Google Scholar

Tavizón-Pozos, J. A., V. A. Suárez-Toriello, J. A. de los Reyes, A. Guevara-Lara, B. Pawelec, J. L. G. Fierro, M. Vrinat, and C. Geantet. 2016a. “Deep Hydrodesulfurization of Dibenzothiophenes over NiW Sulfide Catalysts Supported on Sol-Gel Titania-Alumina.” Topics in Catalysis 59: 241–51, https://doi.org/10.1007/s11244-015-0437-2.Search in Google Scholar

Tavizón-Pozos, J. A., V. A. Suárez-Toriello, P. del Ángel, and J. A. de los Reyes. 2016b. “Hydrodeoxygenation of Phenol over Sulfided CoMo Catalysts Supported on a Mixed Al2O3-TiO2 Oxide.” International Journal of Chemical Reactor Engineering 14: 1–10, https://doi.org/10.1515/ijcre-2016-0038.Search in Google Scholar

Tavizón-Pozos, J. A., C. E. Santolalla-Vargas, O. U. Valdés-Martínez, and J. A. de los Reyes Heredia. 2019. “Effect of Metal Loading in Unpromoted and Promoted CoMo/Al2O3-TiO2 Catalysts for the Hydrodeoxygenation of Phenol.” Catalysts 9 (6): 1–21, https://doi.org/10.3390/catal9060550.Search in Google Scholar

Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing. 2015. “Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report).” Pure and Applied Chemistry 87 (9–10): 1051–69, https://doi.org/10.1515/pac-2014-1117.Search in Google Scholar

Viljava, T. R., S. Komulainen, T. Selvam, and A. O. I. Krause. 1999. “Stability of CoMo/Al2O3 Catalysts: Effect of HDO Cycles on HDS.” Studies in Surface Science and Catalysis 127: 145–52.10.1016/S0167-2991(99)80403-0Search in Google Scholar

Vissenberg, M. J., L. J. M. Joosten, M. M. E. H. Heffels, A. J. van Welsenes, V. H. J. de Beer, and R. A. van Santen. 2000. “Tungstate versus Molybdate Adsorption on Oxidic Surfaces: A Chemical Approach.” The Journal of Physical Chemistry B 104 (35): 8456–61, https://doi.org/10.1021/jp993754c.Search in Google Scholar

Vuurman, M. A., and I. E. Wachs. 1992. “In Situ Raman Spectroscopy of Alumina-Supported Metal Oxide Catalysts.” The Journal of Physical Chemistry A 96 (12): 5008–16, https://doi.org/10.1021/j100191a051.Search in Google Scholar

Wiegel, M., and G. Blasse. 1992. “The Luminescence Properties of Octahedral and Tetrahedral Molybdate Complexes.” Journal of Solid State Chemistry 99 (2): 388–94, https://doi.org/10.1016/0022-4596(92)90327-r.Search in Google Scholar

Yan, P., M. M. J. Li, E. Kennedy, A. Adesina, G. Zhao, A. Adi Setiawanc, and M. Stockenhuber. 2020. “The Role of Acid and Metal Sites in Hydrodeoxygenation of Guaiacol over Ni/Beta Catalysts.” Catalysis Science and Technology 10: 810–25, https://doi.org/10.1039/c9cy01970g.Search in Google Scholar

Zepeda, T. A., A. Infantes-Molina, J. N. Díaz de León, S. Fuentes, G. Alonso-Núnez, G. Torres-Otanez, and B. Pawelec. 2014. “Hydrodesulfurization Enhancement of Heavy and lightS-Hydrocarbons on NiMo/HMS Catalysts Modified with Al and P.” Applied Catalysis A: General 484: 108–21, https://doi.org/10.1016/j.apcata.2014.06.033.Search in Google Scholar

Zhang, D., A. Duan, Z. Zhao, G. Wan, Z. Gao, G. Jiang, K. Chi, and K. H. Chuang. 2010. “Preparation, Characterization and Hydrotreating Performances of ZrO2-Al2O3-Supported NiMo Catalysts.” Catalysis Today 149: 62–8, https://doi.org/10.1016/j.cattod.2009.04.012.Search in Google Scholar

Zhou, W., Y. Zhang, X. Tao, Y. Zhou, Q. Wei, and S. Ding. 2018. “Effects of Gallium Addition to Mesoporous Alumina by Impregnation on Dibenzothiophene Hydrodesulfurization Performances of the Corresponding NiMo Supported Catalysts.” Fuel 228: 152–63.10.1016/j.fuel.2018.04.084Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ijcre-2020-0148).


Received: 2020-08-26
Accepted: 2021-02-11
Published Online: 2021-04-02

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.6.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2020-0148/html
Scroll to top button