Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 16, 2018

Effect of Biomass Concentration on Oxygen Mass Transfer, Power Consumption, Interfacial Tension and Hydrodynamics in a Multiphase Partitioning Bioreactor

  • Manuel Alejandro Lizardi-Jiménez , Pedro López-Ordáz , Margarita Mercedes González-Brambila , Andrea Linares-Morales and Rodrigo Melgarejo-Torres EMAIL logo

Abstract

Several studies have reported that the hydrodynamics are not affected by the biomass in multiphase partitioning bioreactors. This work aims to demonstrate the effect of biomass concentration (0, 1, 3 and 5 g L−1) on the oxygen mass transfer coefficients, the droplet size of the dispersed phase, power consumption and superficial tension in a multiphase partitioning bioreactor (ionic liquid-aqueous-air-biomass system). At a biomass concentration of 5 g L−1, the oxygen mass transfer coefficient (kLa) increased by 55% (249 h−1) compared with the abiotic system (160 h−1). In the multiphasic system, the droplet size (d32) decreased when the biomass concentration was increased, producing an increment in the mass transfer area of the dispersed phase. In addition, the power consumption decreased by 44 % compared to a previous report without biomass. Furthermore, the increment of biomass concentration decreased the superficial tension by up to 15 %. A biomass increment in a multiphase system not also increases product yield, but also enhances the bioconversion process. The results obtained suggest that it is obligatory to consider the effect of biomass concentration on hydrodynamic characterisation, design, scale-up and optimisation for improving the performance of biotechnological processes using multiphase bioreactors.

  1. Conflict of interests: The authors declare no conflict of interests.

Acknowledgments

We are grateful to the National Council of Science and Technology (CONACYT México) for financial support for this project. We thank Sergio Huerta-Ochoa for technical assistance and proofreading for the improvement of this work.

References

Agble, D. K., and M. A. Mendes-Tatsis. 2000. “The Effect of Surfactants on Interfacial Mass Transfer in Binary Liquid–Liquid Systems.” International Journal Heat Massachusetts Transfer 43: 1025–1034. doi:10.1016/S0017-9310(99)00184-2.Search in Google Scholar

Aldric, J. M., S. Gillet, F. Delvigne, C. Blecker, F. Lebeau, J. Wathelet, G. Manigat, and P. Thonart. 2009. “Effect of Surfactants and Biomass on the Gas/Liquid Mass Transfer in an Aqueous-Silicone Oil Two-Phase Partitioning Bioreactor Using Rhodococcus Erythropolis T902.1 To Remove VOCs from Gaseous Effluents.” Journal Chemical Technological Biotechnology 84: 1274–1283. doi:10.1002/jctb.2172.Search in Google Scholar

Almeida, H. F. D., P. J. Carvalho, K. A. Kurnia, J. Lopes-da-Silva, J. A. Coutinho, and M. Freire. 2016. “Surface Tensions of Ionic Liquids: Non-Regular Trend along the Number of Cyano Groups.” Fluid Phase Equilibria 409: 458–465. doi:10.1016/j.fluid.2015.10.044.Search in Google Scholar PubMed PubMed Central

Amaral, P. F. F., M. G. Freire, M. H. M. Rocha-Leão, I. M. Marrucho, J. A. P. Coutinho, and M. A. Z. Coelho. 2008. “Optimization of Oxygen Mass Transfer in a Multiphase Bioreactor with Perfluorodecalin as a Second Liquid Phase.” Biotechnology and Bioengineering 99: 588–598. doi:10.1002/bit.21640.Search in Google Scholar PubMed

Amézcua-Vega, C., H. M. Poggi-Varaldo, F. Esparza-García, E. Ríos-Leal, and R. Rodríguez-Vázquez. 2007. “Effect of Culture Conditions on Fatty Acids Composition of a Biosurfactant Produced by Candida Ingens and Changes of Surface Tension of Culture Media.” Bioresource Technology 98: 237–240. doi:10.1016/j.biortech.2005.11.025.Search in Google Scholar PubMed

Amit, K., K. Tiwari Sonu, and S. K. Saha. 2013. “Aggregation Behaviour and Thermodynamics of Mixed Micellization of Gemini Surfactants with a Room Temperature Ionic Liquid in Water and Water-Organic Solvent Mixed Media.” Journal Chemical Thermodynamics 60: 29–40. doi:10.1016/j.jct.2012.12.024.Search in Google Scholar

Arakawa, N. S., L. Gobbo-Neto, S. R. Ambrosio, G. A. Antonucci, S. V. Sampaio, M. P. Tallarico, S. Said, T. J. Schmidt, and F. Batista Da Costa. 2013. “Unusual Biotransformation Products of the Sesquiterpene Lactone Budlein A by Aspergillus Species.” Phytochemistry 96: 92–100. doi:10.1016/j.phytochem.2013.09.022.Search in Google Scholar PubMed

Ascanio, G., B. Castro, and E. Galindo. 2004. “Measurement of Power Consumption in Stirred Vessels: A Review.” Chemical Engineering Researcher Design 82: 1282–1290. doi:10.1205/cerd.82.9.1282.44164.Search in Google Scholar

Brito-Bazan, M., D. H. Cuervo-Amaya, G. Corkidi, and E. Galindo. 2017. “Air and Oil Dispersions in a Four-Phase Fermentation Model, Studied under Varying Physicochemical Conditions and Retrofitted Constant Gassed Power Input.” Chemical Engineering Researcher Design 120: 316–324. doi:10.1016/j.cherd.2017.02.019.Search in Google Scholar

Castillo-Araiza, C.O., D. Palmerín-Carreño, A. Prado-Barragán, and S. Huerta-Ochoa. 2017. “On the conceptual design of a partitioning technology for the bioconversion of (+)-valencene to (+)-nootkatone on whole cells: Experimentation and modelling.” Chemical Engineering and Processing: Process Intensification 122: 493–507. doi:10.1016/j.cep.2017.05.008.Search in Google Scholar

Daugulis, J. 1997. “Partitioning Bioreactors.” Current Opinion in Biotechnology 8: 169–174. doi:10.1016/S0958-1669(97)80097-3.Search in Google Scholar

Doig, S. D., L. M. O’Sullivan, S. Patel, J. M. Ward, and J. M. Woodley. 2001. “Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239.” Enzyme and Microbial Technology 28 (2-3): 265–274. doi:10.1016/S0141-0229(00)00320-3.Search in Google Scholar

Fuchs, R., D. Dewey, and A. Humphrey. 1971. “Effect of Surface Aeration on Scale-Up Procedures for Fermentation Processes.” Industrial Engineering Chemical Processing Design Developments 10: 190–196. doi:10.1021/i260038a009.Search in Google Scholar

Garcia-Ochoa, F, and E Gomez. 2009 (3). “Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview.” Biotechnology Advances 27 (2): 153–176. DOI:10.1016/j.biotechadv.2008.10.006.Search in Google Scholar PubMed

Hadjiev, D., E. N. Sabiri, and A. Zanati. 2006. “Mixing Time in Bioreactors under Aerated Conditions.” Biochemical Engineering Journal 27: 323–330. doi:10.1016/j.bej.2005.08.009.Search in Google Scholar

Lovick, J., A. A. Mouza, S. V. Paras, G. J. Lye, and P. Angeli. 2005. “Drop Size Distribution in Highly Concentrated liquid–Liquid Systems in Stirred Tanks Using a Light Back Scattering Method.” Journal Chemical Technological Biotechnology 80: 545–552. doi:10.1002/jctb.1205.Search in Google Scholar

Malinowski, J. J. 2001. “Two-Phase Partitioning Bioreactors in Fermentation Technology.” Biotechnology Advances 19: 25–538. doi:10.1016/S0734-9750(01)00080-5.Search in Google Scholar PubMed

Melgarejo-Torres, R., C. O. Castillo-Araiza, P. López-Ordáz, N. V. Calleja-Castañeda, J. L. Cano-Velasco, R. M. Camacho-Ruíz, G. J. Lye, and S. Huerta-Ochoa. 2015. “Evaluation of Ionic Liquids as Dispersed Phase during the Production of Lactones with E. Coli in a Three Phase Partitioning Bioreactor.” Chemical Engineering Journal 279: 379–386. doi:10.1016/j.cej.2015.04.127.Search in Google Scholar

Palmerín-Carreño, D. M., C. O. Castillo-Araiza, O. M. Rutiaga-Quiñones, J. R. Verde-Calvo, and S. Huerta-Ochoa. 2016. “Kinetic, oxygen mass transfer and hydrodynamic studies in a three-phase stirred tank bioreactor for the bioconversion of (+)-valencene on Yarrowia lipolytica 2.2ab.” Biochemical Engineering Journal 113: 37–46. doi:10.1016/j.bej.2016.05.008.Search in Google Scholar

Patel, N., and J. Thibault. 2009. “Enhanced in Situ Dynamic Method for Measuring kLa in Fermentation Media.” Biochemical Engineering Journal 47 (1–3): 48–54. doi:10.1016/j.bej.2009.07.001.Search in Google Scholar

Schugerl, K. 1981. “Oxygen Transfer into Highly Viscous Media.” In Reactors and Reactions. Advances in Biochemical Engineering Series, edited by A. Fiechter, 71–174. Berlin: Springer-Verlag. doi:10.1007/3-540-10464-X_17.Search in Google Scholar

Tolman, R. C. 1949. “The Effect of Droplet Size on Surface Tension.” Journal Chemical Physical 17: 333. doi:10.1063/1.1747247.Search in Google Scholar

Torres-Martínez, D., R. Melgarejo-Torres, M. Gutiérrez-Rojas, C. Aguilera-Vázquez, M. Micheletti, G. Lye, and S. Huerta-Ochoa. 2009. “Hydrodynamic and Oxygen Mass Transfer Studies in a Three-Phase (Air–Water–Ionic Liquid) Stirred Tank Bioreactor.” Biochemical Engineering Journal 45: 209–217. doi:10.1016/j.bej.2009.03.014.Search in Google Scholar

Walsh, C. T., and J. Latham. 1986. “Mechanism Based Inactivation of the Flavoprotein Cyclohexanone Monooxygenase by S-Oxygenation.” Journal of Protein Chemistry 5: 79–87.10.1007/BF01025192Search in Google Scholar

Wei-Chuan, J., W. Ruey-Shin, and Y. Yu-Hong. 2015. “Applications of a Lipopeptide Biosurfactant, Surfactin, Produced by Microorganisms.” Biochemical Engineering Journal 103: 158–169. doi:10.1016/j.bej.2015.07.009.Search in Google Scholar

Received: 2017-10-23
Revised: 2018-01-03
Accepted: 2018-03-02
Published Online: 2018-03-16

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.6.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2017-0201/html
Scroll to top button