Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 10, 2021

Characterization of a fluorescent 1,8-naphthalimide-functionalized PAMAM dendrimer and its Cu(ii) complexes as cytotoxic drugs: EPR and biological studies in myeloid tumor cells

  • Barbara Canonico EMAIL logo , Michela Cangiotti , Mariele Montanari , Stefano Papa , Vieri Fusi , Luca Giorgi , Caterina Ciacci , Maria Francesca Ottaviani , Desislava Staneva and Ivo Grabchev EMAIL logo
From the journal Biological Chemistry

Abstract

The activity and interacting ability of a polyamidoamine (PAMAM) dendrimer modified with 4-N-methylpiperazine-1,8-naphthalimide units (termed D) and complexed by Cu(ii) ions, towards healthy and cancer cells were studied. Comparative electron paramagnetic resonance (EPR) studies of the Cu(ii)-D complex are presented: coordination mode, chemical structure, flexibility and stability of these complexes, in the absence and presence of myeloid cancer cells and peripheral blood mononuclear cells (PBMC). The interactions of Cu(ii) ions in the biological media at different equilibrium times were studied, highlighting different stability and interacting conditions with the cells. Furthermore, flow cytometry and confocal analysis, trace the peculiar properties of the dendrimers in PBMC and U937 cells. Indeed, a new probe (Fly) was used as a potential fluorescent tool for biological imaging of Cu(ii). The study highlights that dendrimer and, mainly, the Cu(ii) metallodendrimer are cytotoxic agents for the cells, specifically for U937 tumor cells, inducing mitochondrial dysfunction, ROS increase and lysosome involvement. The metallodendrimer shows antitumor selectivity, fewer affecting healthy PBMC, inducing a massive apoptotic cell death on U937 cells, in line with the high stability of this complex, as verified by EPR studies. The results underline the potentiality of this metallodendrimer to be used as anticancer drug.


Corresponding authors: Barbara Canonico, Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy, E-mail: ; and Ivo Grabchev, Sofia University “St. Kliment Ohridski”, Faculty of Medicine, BG-1407 Sofia, Bulgaria, E-mail:

Acknowledgements

This work was particularly supported by Grant № КП-06-КОСТ/4, Fund “Scientific Research”, Ministry of Education and Science of Bulgaria. This article is based upon work from COST Action CA17140 “Cancer Nanomedicine from the Bench to the Bedside” supported by COST (European Cooperation in Science and Technology). The authors wish to thank the transfusion Center of The Hospital of Urbino “S. Maria della Misericordia”, in particular Dr Giuseppe Furlò.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Amatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., MacEdi, E., Micheloni, M., Paoli, P., Pontellini, R., et al.. (2012). Multi-use NBD-based tetra-amino macrocycle: fluorescent probe for metals and anions and live cell marker. Chemistry 18: 4274–4284, https://doi.org/10.1002/chem.201103135.Search in Google Scholar PubMed

Ambrosi, G., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., MacEdi, E., Micheloni, M., Paoli, P., Rossi, P., and Zappia, G. (2009). A new versatile solvatochromic amino-macrocycle. from metal ions to cell sensing in solution and in the solid state. Chem. Commun.: 7039–7041, https://doi.org/10.1039/b913435b.Search in Google Scholar PubMed

Andreozzi, E., Antonelli, A., Cangiotti, M., Canonico, B., Sfara, C., Pianetti, A., Bruscolini, F., Sahre, K., Appelhans, D., Papa, S., et al.. (2017). Interactions of nitroxide-conjugated and non-conjugated glycodendrimers with normal and cancer cells and biocompatibility studies. Bioconjug. Chem. 28: 524–538, https://doi.org/10.1021/acs.bioconjchem.6b00635.Search in Google Scholar PubMed

Attar, N., Campos, O.A., Vogelauer, M., Cheng, C., Xue, Y., Schmollinger, S., Salwinski, L., Mallipeddi, N.V., Boone, B.A., Yen, L., et al.. (2020). The histone H3-H4 tetramer is a copper reductase enzyme. Science 369: 59–64, https://doi.org/10.1126/science.aba8740.Search in Google Scholar PubMed PubMed Central

Badea, M., Uivarosi, V., and Olar, R. (2020). Improvement in the pharmacological profile of copper biological active complexes by their incorporation into organic or inorganic matrix. Molecules 25: 5830, https://doi.org/10.3390/molecules25245830.Search in Google Scholar PubMed PubMed Central

Bossmann, S., Turro, N.J., Tomalia, D.A., and Ottaviani, M.F. (1994). Characterization of starburst dendrimers by the EPR technique. 1. Copper complexes in water Solution. J. Am. Chem. Soc. 116: 661–671.10.1021/ja00081a029Search in Google Scholar

Budil, D.E., Sanghyuk, L., Saxena, S., and Freed, J.H. (1996). Nonlinear-least-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified levenberg-marquardt algorithm. J. Magn. Reson. 120: 155–189, https://doi.org/10.1006/jmra.1996.0113.Search in Google Scholar

Cangiotti, M., Staneva, D., Ottaviani, M.F., Vasileva-Tonkova, E., and Grabchev, I. (2021). Synthesis and characterization of fluorescent PAMAM dendrimer modified with 1,8-naphthalimide units and its Cu(ii) complex designed for specific biomedical application. J. Photochem. Photobiol. Chem. 415: 113312, https://doi.org/10.1016/j.jphotochem.2021.113312.Search in Google Scholar

Canonico, B., Carloni, R., Sanz Del Olmo, N., Papa, S., Nasoni, M.G., Fattori, A., Cangiotti, M., De La Mata, F.J., Ottaviani, M.F., and García-Gallego, S. (2020). Fine-tuning the interaction and therapeutic effect of Cu(ii) carbosilane metallodendrimers in cancer cells: an in vitro electron paramagnetic resonance study. Mol. Pharm. 17: 2691–2702, https://doi.org/10.1021/acs.molpharmaceut.0c00396.Search in Google Scholar PubMed

Carloni, R., Sanz del Olmo, N., Canonico, B., Montanari, M., Ciacci, C., Ambrosi, G., de la Mata, F.J., Ottaviani, M.F., and García-Gallego, S. (2021). Elaborated study of Cu(ii) carbosilane metallodendrimers bearing substituted iminopyridine moieties as antitumor agents. Eur. J. Med. Chem. 215: 113292, https://doi.org/10.1016/j.ejmech.2021.113292.Search in Google Scholar PubMed

Carone, M., Moreno, S., Cangiotti, M., Ottaviani, M.F., Wang, P., Carloni, R., and Appelhans, D. (2020). DOTA glycodendrimers as Cu(ii) complexing agents and their dynamic interaction characteristics toward liposomes. Langmuir 36: 12816–12829, https://doi.org/10.1021/acs.langmuir.0c01776.Search in Google Scholar PubMed PubMed Central

Chazotte, B. (2011). Labeling lysosomes in live cells with LysoTracker. Cold Spring Harb. Protoc. 2011: pdb.prot5571, https://doi.org/10.1101/pdb.prot5571.Search in Google Scholar PubMed

Cho, H.D., Lee, J.H., Moon, K.D., Park, K.H., Lee, M.K., and Seo, K. Il (2018). Auriculasin-induced ROS causes prostate cancer cell death via induction of apoptosis. Food Chem. Toxicol. 111: 660–669, https://doi.org/10.1016/j.fct.2017.12.007.Search in Google Scholar PubMed

Dehshahri, A. and Sadeghpour, H. (2015). Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf. B Biointerfaces 132: 85–102, https://doi.org/10.1016/j.colsurfb.2015.05.006.Search in Google Scholar PubMed

Demers-Lamarche, J., Guillebaud, G., Tlili, M., Todkar, K., Bélanger, N., Grondin, M., P’Nguyen, A., Michel, J., and Germain, M. (2016). Loss of mitochondrial function impairs lysosomes. J. Biol. Chem. 291: 10263–10276, https://doi.org/10.1074/jbc.m115.695825.Search in Google Scholar PubMed PubMed Central

Djoko, K.Y., Ong, Y.C.L., Walker, M.J., and McEwan, A.G. (2015). The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J. Biol. Chem. 290: 1854–1861, https://doi.org/10.1074/jbc.R115.647099.Search in Google Scholar PubMed PubMed Central

Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35: 495–516, https://doi.org/10.1080/01926230701320337.Search in Google Scholar PubMed PubMed Central

Foo, J.B., Ng, L.S., Lim, J.H., Tan, P.X., Lor, Y.Z., Loo, J.S.E., Low, M.L., Chan, L.C., Beh, C.Y., Leong, S.W., et al. (2019). Induction of cell cycle arrest and apoptosis by copper complex Cu(SBCM)2 towards oestrogen-receptor positive MCF-7 breast cancer cells. RSC Adv. 9: 18359–18370, https://doi.org/10.1039/c9ra03130h.Search in Google Scholar PubMed PubMed Central

Forbes, J.R. and Cox, D.W. (1998). Functional characterization of missense mutations in ATP7B: Wilson disease mutation or normal variant? Am. J. Hum. Genet. 63: 1663–1674, https://doi.org/10.1086/302163.Search in Google Scholar PubMed PubMed Central

Furukawa, Y. and O’Halloran, T.V. (2006). Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with amyptrophic lateral sclerosis. Antioxidants Redox Signal 8: 847–867, doi:https://doi.org/10.1089/ars.2006.8.847.10.1089/ars.2006.8.847Search in Google Scholar PubMed PubMed Central

García-Gallego, S., Cangiotti, M., Fiorani, L., Fattori, A., Muñoz-Fernández, M.Á., Gomez, R., Ottaviani, M.F., and Javier de la Mata, F. (2013). Anionic sulfonated and carboxylated PPI dendrimers with the EDA core: synthesis and characterization of selective metal complexing agents. J. Chem. Soc. Dalt. Trans. 42: 5874–5889, https://doi.org/10.1039/c3dt32870h.Search in Google Scholar PubMed

García, V., Lara-Chica, M., Cantarero, I., Sterner, O., Calzado, M.A., and Muñoz, E. (2016). Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget 7: 4490–4506, https://doi.org/10.18632/oncotarget.6606.Search in Google Scholar PubMed PubMed Central

Grabchev, I., Staneva, D., Vasileva-Tonkova, E., Alexandrova, R., Cangiotti, M., Fattori, A., and Ottaviani, M.F. (2017). Аntimicrobial and anticancer activity of new poly(propyleneamine) metallodendrimers. J. Polym. Res. 24: 1–11, https://doi.org/10.1007/s10965-017-1387-0.Search in Google Scholar

Gupta, A., Das, S., and Ray, K. (2018). A glimpse into the regulation of the Wilson disease protein, ATP7B, sheds light on the complexity of mammalian apical trafficking pathways. Metallomics 10: 378–387, https://doi.org/10.1039/c7mt00314e.Search in Google Scholar PubMed PubMed Central

Harris, E.D. (2000). Cellular copper transport and metabolism. Annu. Rev. Nutr., https://doi.org/10.1146/annurev.nutr.20.1.291.Search in Google Scholar PubMed

Hirayama, T., Van De Bittner, G.C., Gray, L.W., Lutsenko, S., and Chang, C.J. (2012). Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc. Natl. Acad. Sci. U.S.A. 109: 2228–2233, https://doi.org/10.1073/pnas.1113729109.Search in Google Scholar PubMed PubMed Central

Hołota, M., Magiera, J., Michlewska, S., Kubczak, M., del Olmo, N.S., García-Gallego, S., Ortega, P., de la Mata, F.J., Ionov, M., and Bryszewska, M. (2019). In vitro anticancer properties of copper metallodendrimers. Biomolecules 9: 155, https://doi.org/10.3390/biom9040155.Search in Google Scholar PubMed PubMed Central

Huster, D. and Lutsenko, S. (2007). Wilson disease: not just a copper disorder. Analysis of a Wilson disease model demonstrates the link between copper and lipid metabolism. Mol. Biosyst. 3: 816–824, https://doi.org/10.1039/b711118p.Search in Google Scholar PubMed

Inesi, G., Pilankatta, R., and Tadini-Buoninsegni, F. (2014). Biochemical characterization of P-type copper ATPases. Biochem. J., https://doi.org/10.1042/bj20140741.Search in Google Scholar

Ionov, M., Ihnatsyeu-Kachan, A., Michlewska, S., Shcharbina, N., Shcharbin, D., Majoral, J.P., and Bryszewska, M. (2016). Effect of dendrimers on selected enzymes – evaluation of nano carriers. Int. J. Pharm. 499: 247–254, https://doi.org/10.1016/j.ijpharm.2015.12.056.Search in Google Scholar PubMed

Kardos, J., Héja, L., Simon, Á., Jablonkai, I., Kovács, R., and Jemnitz, K. (2018). Copper signalling: causes and consequences. Cell Commun. Signal., https://doi.org/10.1186/s12964-018-0277-3.Search in Google Scholar PubMed PubMed Central

Kitchen, J.A., Martinho, P.N., Morgan, G.G., and Gunnlaugsson, T. (2014). Synthesis, crystal structure and EPR spectroscopic analysis of novel copper complexes formed from N-pyridyl-4-nitro-1,8-naphthalimide ligands. J. Chem. Soc. Dalt. Trans 43: 6468–6479, https://doi.org/10.1039/c3dt53323a.Search in Google Scholar PubMed

Krasnovskaya, O., Naumov, A., Guk, D., Gorelkin, P., Erofeev, A., Beloglazkina, E., and Majouga, A. (2020). Copper coordination compounds as biologically active agents. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21113965.Search in Google Scholar PubMed PubMed Central

Lamb, A.L., Torres, A.S., O’Halloran, T.V., and Rosenzweig, A.C. (2001). Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat. Struct. Biol. 8: 751–755, https://doi.org/10.1038/nsb0901-751.Search in Google Scholar PubMed

Linz, R. and Lutsenko, S. (2007). Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins. J. Bioenerg. Biomembr., https://doi.org/10.1007/s10863-007-9101-2.Search in Google Scholar PubMed

Liu, Z.C., Wang, B.D., Li, B., Wang, Q., Yang, Z.Y., Li, T.R., and Li, Y. (2010). Crystal structures, DNA-binding and cytotoxic activities studies of Cu(ii) complexes with 2-oxo-quinoline-3-carbaldehyde Schiff-bases. Eur. J. Med. Chem. 45: 5353–5361, https://doi.org/10.1016/j.ejmech.2010.08.060.Search in Google Scholar PubMed

Loganathan, R., Ganeshpandian, M., Bhuvanesh, N.S.P., Palaniandavar, M., Muruganantham, A., Ghosh, S.K., Riyasdeen, A., and Akbarsha, M.A. (2017). DNA and protein binding, double-strand DNA cleavage and cytotoxicity of mixed ligand copper(ii) complexes of the antibacterial drug nalidixic acid. J. Inorg. Biochem. 174: 1–13, https://doi.org/10.1016/j.jinorgbio.2017.05.001.Search in Google Scholar PubMed

Lutsenko, S., Barnes, N.L., Bartee, M.Y., and Dmitriev, O.Y. (2007). Function and regulation of human copper-transporting ATPases. Physiol. Rev., https://doi.org/10.1152/physrev.00004.2006.Search in Google Scholar PubMed

Michlewska, S., Ionov, M., Shcharbin, D., Maroto-Díaz, M., Gomez Ramirez, R., Javier de la Mata, F., and Bryszewska, M. (2017). Ruthenium metallodendrimers with anticancer potential in an acute promyelocytic leukemia cell line (HL60). Eur. Polym. J. 87: 39–47, https://doi.org/10.1016/j.eurpolymj.2016.12.011.Search in Google Scholar

Min, K., Shahriyar, S.A., and Kwon, T.K. (2019). Arylquin 1, a potent Par-4 secretagogue, induces lysosomal membrane permeabilization-mediated non-apoptotic cell death in cancer cells. Toxicol. Res. 36: 167–173, https://doi.org/10.1007/s43188-019-00025-1.Search in Google Scholar PubMed PubMed Central

Ndagi, U., Mhlongo, N., and Soliman, M.E. (2017). Metal complexes in cancer therapy – an update from drug design perspective. Drug Des. Devel. Ther 3: 599–616, https://doi.org/10.2147/DDDT.S119488.10.2147/DDDT.S119488Search in Google Scholar PubMed PubMed Central

Noe, L.J., Degenkolb, E.O., and Retzepis, P.M. (1978). Dependence of radiationless relaxation in acridine on solvent using picosecond spectroscopy. J. Chem. Phys. 68: 4435–4438, https://doi.org/10.1063/1.435525.Search in Google Scholar

Ogra, Y., Tejima, A., Hatakeyama, N., Shiraiwa, M., Wu, S., Ishikawa, T., Yawata, A., Anan, Y., and Suzuki, N. (2016). Changes in intracellular copper concentration and copper-regulating gene expression after PC12 differentiation into neurons. Sci. Rep. 6: 1–9, https://doi.org/10.1038/srep33007.Search in Google Scholar PubMed PubMed Central

Ottaviani, M.F., Cangiotti, M., Fattori, A., Coppola, C., Lucchi, S., Ficker, M., Petersen, J.F., and Christensen, J.B. (2013). Copper(II) complexes with 4-carbomethoxypyrrolidone functionalized PAMAM-dendrimers: an EPR study. J. Phys. Chem. B 117: 14163–14172, https://doi.org/10.1021/jp410307z.Search in Google Scholar PubMed

Ottaviani, M.F., Cangiotti, M., Fattori, A., Coppola, C., Posocco, P., Laurini, E., Liu, X., Liu, C., Fermeglia, M., Peng, L., et al.. (2014). Copper(ii) binding to flexible triethanolamine-core PAMAM dendrimers: a combined experimental/in silico approach. Phys. Chem. Chem. Phys. 16: 685–694, https://doi.org/10.1039/c3cp54005g.Search in Google Scholar PubMed

Ottaviani, M.F., Montalti, F., Turro, N.J., and Tomalia, D.A. (1997). Characterization of starburst dendrimers by the EPR technique. Copper(II) ions binding full-generation dendrimers. J. Phys. Chem. B 101: 158–166, https://doi.org/10.1021/jp962857h.Search in Google Scholar

Peña, K., Coblenz, J., and Kiselyov, K. (2015). Brief exposure to copper activates lysosomal exocytosis. Cell Calcium 57: 257–262.10.1016/j.ceca.2015.01.005Search in Google Scholar PubMed PubMed Central

Pervaiz, S. and Clement, M.-V. (2004). Tumor intracellular redox status and drug resistance-serendipity or a causal relationship? Curr. Pharm. Des. 10: 1969–1977, https://doi.org/10.2174/1381612043384411.Search in Google Scholar PubMed

Radomska-Les̈niewska, D.M., Hevelke, A., Skopiński, P., Bałan, B., Jóźwiak, J., Rokicki, D., Skopińska-Rózewska, E., and Białoszewska, A. (2016). Reactive oxygen species and synthetic antioxidants as angiogenesis modulators: clinical implications. Pharmacol. Rep. 68: 462–71.10.1016/j.pharep.2015.10.002Search in Google Scholar PubMed

Ruiz-Azuara, L. and Bravo-Gomez, M.E. (2010). Copper compounds in cancer chemotherapy. Curr. Med. Chem. 17: 3606–3615, https://doi.org/10.2174/092986710793213751.Search in Google Scholar PubMed

Salucci, S., Burattini, S., Battistelli, M., Buontempo, F., Canonico, B., Martelli, A.M., Papa, S., and Falcieri, E. (2015). Tyrosol prevents apoptosis in irradiated keratinocytes. J. Dermatol. Sci. 80: 61–68, https://doi.org/10.1016/j.jdermsci.2015.07.002.Search in Google Scholar PubMed

Sanz Del Olmo, N., Carloni, R., Bajo, A.M., Ortega, P., Fattori, A., Gómez, R., Ottaviani, M.F., García-Gallego, S., Cangiotti, M., and De La Mata, F.J. (2019). Insight into the antitumor activity of carbosilane Cu(ii)-metallodendrimers through their interaction with biological membrane models. Nanoscale 11: 13330–13342, https://doi.org/10.1039/c9nr03313k.Search in Google Scholar PubMed

Sanz del Olmo, N., Maroto-Díaz, M., Gómez, R., Ortega, P., Cangiotti, M., Ottaviani, M.F., and de la Mata, F.J. (2017). Carbosilane metallodendrimers based on copper(II) complexes: synthesis, EPR characterization and anticancer activity. J. Inorg. Biochem. 177: 211–218, https://doi.org/10.1016/j.jinorgbio.2017.09.023.Search in Google Scholar PubMed

Sawada, T., Fukumaru, K., and Sakurai, H. (1996). Coordination-dependent ESR spectra of copper(II) complexes with a CuN4 type coordination mode: relationship between ESR parameters and stability constants or redox potentials of the complexes. Chem. Pharm. Bull. 44: 1009–1016, https://doi.org/10.1248/cpb.44.1009.Search in Google Scholar

Serment-Guerrero, J., Bravo-Gomez, M.E., Lara-Rivera, E., and Ruiz-Azuara, L. (2017). Genotoxic assessment of the copper chelated compounds Casiopeinas: clues about their mechanisms of action. J. Inorg. Biochem. 166: 68–75, https://doi.org/10.1016/j.jinorgbio.2016.11.007.Search in Google Scholar PubMed

Shcharbin, D., Shcharbina, N., Milowska, K., de la Mata, F.J., Muñoz-Fernandez, M.A., Mignani, S., Gomez-Ramirez, R., Majoral, J.-P., and Bryszewska, M. (2014). Interference of cationic polymeric nanoparticles with clinical chemistry tests—clinical relevance. Int. J. Pharm. 473: 599–606, https://doi.org/10.1016/j.ijpharm.2014.07.054.Search in Google Scholar PubMed

Shimada, A., Kubo, M., Baba, S., Yamashita, K., Hirata, K., Ueno, G., Nomura, T., Kimura, T., Shinzawa-Itoh, K., Baba, J., et al.. (2017). A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase. Sci. Adv. 3, https://doi.org/10.1126/sciadv.1603042.Search in Google Scholar PubMed PubMed Central

Šípoš, R., Szabó-Plánka, T., Rockenbauer, A., Nagy, N.V., Šima, J., Melník, M., and Nagypál, I. (2008). Equilibria of 3-pyridylmethanol with copper(ii). A comparative electron Spin resonance study by the decomposition of spectra in liquid and frozen solutions. J. Phys. Chem. 112: 10280–10286.10.1021/jp805210vSearch in Google Scholar PubMed

Sun, W., Bao, J., Lin, W., Gao, H., Zhao, W., Zhang, Q., Leung, C.H., Ma, D.L., Lu, J., and Chen, X. (2016). 2-Methoxy-6-acetyl-7-methyljuglone (MAM), a natural naphthoquinone, induces NO-dependent apoptosis and necroptosis by H2O2-dependent JNK activation in cancer cells. Free Radic. Biol. Med. 92: 61–77, https://doi.org/10.1016/j.freeradbiomed.2016.01.014.Search in Google Scholar PubMed

Svenson, Sonke, Tomalia, D.A., Reyna, L.A., and Svenson, S. (2007). Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem. Soc. Trans. 35: 61–67, https://doi.org/10.1042/BST0350061.Search in Google Scholar PubMed

Szabó-Plánka, T., Nagy, N., Rockenbauer, A., and Korecz, L. (2000). An ESR study of the copper(II)-glycyl-L-histidine system in aqueous solution by the simultaneous analysis of multi-component spectra. Formation constants and coordination modes. Polyhedron 19: 2049–2057.10.1016/S0277-5387(00)00504-0Search in Google Scholar

Thomas, G.R., Forbes, J.R., Roberts, E.A., Walshe, J.M., and Cox, D.W. (1995). The Wilson disease gene: spectrum of mutations and their consequences. Nat. Genet. 9: 210–217, https://doi.org/10.1038/ng0295-210.Search in Google Scholar PubMed

Tisato, F., Marzano, C., Porchia, M., Pellei, M., and Santini, C. (2009). Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev. 30: 708–749, https://doi.org/10.1002/med.20174.Search in Google Scholar PubMed

Umamaheswari, V., Cias, P., Pöppl, A., and Gescheidt, G. (2014). Catalytically active Cu(II)-Pybox complexes: insights by EPR spectroscopy and DFT computations. Appl. Magn. Reson. 457: 667–679, https://doi.org/10.1007/s00723-014-0545-3.Search in Google Scholar

Wehbe, M., Leung, A.W.Y., Abrams, M.J., Orvig, C., and Bally, M.B. (2017). A Perspective-can copper complexes be developed as a novel class of therapeutics? Dalton Trans. 6: 10758–73.10.1039/C7DT01955FSearch in Google Scholar

Yashin, D.V., Romanova, E.A., Ivanova, O.K., and Sashchenko, L.P. (2016). The Tag7-Hsp70 cytotoxic complex induces tumor cell necroptosis via permeabilisation of lysosomes and mitochondria. Biochimie 123: 32–36, https://doi.org/10.1016/j.biochi.2016.01.007.Search in Google Scholar PubMed

Zemirli, N., Morel, E., and Molino, D. (2018). Mitochondrial dynamics in basal and stressful conditions. Int. J. Mol. Sci. 19: 564, https://doi.org/10.3390/ijms19020564.Search in Google Scholar PubMed PubMed Central

Zhao, F., Wang, W., Lu, W., Xu, L., Yang, S., Cai, X.M., Zhou, M., Lei, M., Ma, M., Xu, H.J., et al.. (2018). High anticancer potency on tumor cells of dehydroabietylamine Schiff-base derivatives and a copper(II) complex. Eur. J. Med. Chem. 146: 451–459, https://doi.org/10.1016/j.ejmech.2018.01.041.Search in Google Scholar PubMed

Zou, Y., Sun, Y., Zhu, Y., Ma, B., Nussinov, R., and Zhang, Q. (2016). Critical nucleus structure and aggregation mechanism of the C-terminal Fragment of copper-zinc superoxide dismutase protein. ACS Chem. Neurosci. 7: 286–296, https://doi.org/10.1021/acschemneuro.5b00242.Search in Google Scholar PubMed PubMed Central

Received: 2021-10-07
Accepted: 2021-11-18
Published Online: 2021-12-10
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2021-0388/html
Scroll to top button