Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 31, 2020

Redox-dependent and independent effects of thioredoxin interacting protein

  • Xiankun Cao , Wenxin He , Yichuan Pang , Yu Cao EMAIL logo and An Qin ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Thioredoxin interacting protein (TXNIP) is an important physiological inhibitor of the thioredoxin (TXN) redox system in cells. Regulation of TXNIP expression and/or activity not only plays an important role in redox regulation but also exerts redox-independent physiological effects that exhibit direct pathophysiological consequences including elevated inflammatory response, aberrant glucose metabolism, cellular senescence and apoptosis, cellular immunity, and tumorigenesis. This review provides a brief overview of the current knowledge concerning the redox-dependent and independent roles of TXNIP and its relevance to various disease states. The implications for the therapeutic targeting of TXNIP will also be discussed.


Corresponding authors: Yu Cao, Department of Orthopaedics and Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People’s Republic of China, E-mail: , and An Qin, Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People’s Republic of China, E-mail:
Xiankun Cao and Wenxin He: These authors contributed equally to this work.

Funding source: National Infrastructures for Translational Medicine (Shanghai) opening topic

Award Identifier / Grant number: TMSK-2020-119

Funding source: National Key Research and Development Program of China

Award Identifier / Grant number: 2018YFC1004704

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 31670849; 81572167; 81772373

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81772373; 81572167; 31670849); National Key Research and Development Program of China (2018YFC1004704); National Infrastructures for Translational Medicine (Shanghai) opening topic (TMSK-2020-119).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (Grant No. 81772373; 81572167; 31670849); National Key Research and Development Program of China (2018YFC1004704); National Infrastructures for Translational Medicine (Shanghai) opening topic (TMSK-2020-119).

  3. Conflict of interest: All authors have no conflict of interest to declare.

References

Acosta, J.C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J.P., Athineos, D., Kang, T.W., Lasitschka, F., Andrulis, M., et al. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15: 978–990, https://doi.org/10.1038/ncb2784.Search in Google Scholar PubMed PubMed Central

Ago, T., Liu, T., Zhai, P., Chen, W., Li, H., Molkentin, J.D., Vatner, S.F., and Sadoshima, J. (2008). A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133: 978–993, https://doi.org/10.1016/j.cell.2008.04.041.Search in Google Scholar PubMed

Ahn, B., Soundarapandian, M.M., Sessions, H., Peddibhotla, S., Roth, G.P., Li, J.L., Sugarman, E., Koo, A., Malany, S., Wang, M., Yea, K., et al. (2016). MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling. J. Clin. Invest. 126: 3567–3579, https://doi.org/10.1172/jci87382.Search in Google Scholar PubMed PubMed Central

Al-Gayyar, M.M., Abdelsaid, M.A., Matragoon, S., Pillai, B.A., and El-Remessy, A.B. (2011). Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Br. J. Pharmacol. 164: 170–180, https://doi.org/10.1111/j.1476-5381.2011.01336.x.Search in Google Scholar PubMed PubMed Central

Alvarez, C.E. (2008). On the origins of arrestin and rhodopsin. BMC Evol. Biol. 8: 222, https://doi.org/10.1186/1471-2148-8-222.Search in Google Scholar PubMed PubMed Central

Artner, I., Hang, Y., Mazur, M., Yamamoto, T., Guo, M., Lindner, J., Magnuson, M.A., and Stein, R. (2010). MafA and MafB regulate genes critical to beta-cells in a unique temporal manner. Diabetes 59: 2530–2539, https://doi.org/10.2337/db10-0190.Search in Google Scholar PubMed PubMed Central

Bauernfeind, F.G., Horvath, G., Stutz, A., Alnemri, E.S., MacDonald, K., Speert, D., Fernandes-Alnemri, T., Wu, J., Monks, B.G., Fitzgerald, K.A., et al. (2009). Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183: 787–791, https://doi.org/10.4049/jimmunol.0901363.Search in Google Scholar PubMed PubMed Central

Beckman, K.B., and Ames, B.N. (1998). The free radical theory of aging matures. Physiol. Rev. 78: 547–581, https://doi.org/10.1152/physrev.1998.78.2.547.Search in Google Scholar PubMed

Billiet, L., Furman, C., Larigauderie, G., Copin, C., Brand, K., Fruchart, J.C., and Rouis, M. (2005). Extracellular human thioredoxin-1 inhibits lipopolysaccharide-induced interleukin-1beta expression in human monocyte-derived macrophages. J. Biol. Chem. 280: 40310–40318, https://doi.org/10.1074/jbc.m503644200.Search in Google Scholar

Bodnar, J.S., Chatterjee, A., Castellani, L.W., Ross, D.A., Ohmen, J., Cavalcoli, J., Wu, C., Dains, K.M., Catanese, J., Chu, M., et al. (2002). Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat. Genet. 30: 110–116, https://doi.org/10.1038/ng811.Search in Google Scholar PubMed PubMed Central

Borodkina, A., Shatrova, A., Abushik, P., Nikolsky, N., and Burova, E. (2014). Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging 6: 481–495, https://doi.org/10.18632/aging.100673.Search in Google Scholar PubMed PubMed Central

Bronner, D.N., Abuaita, B.H., Chen, X., Fitzgerald, K.A., Nunez, G., He, Y., Yin, X.M., and O’Riordan, M.X. (2015). Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage. Immunity 43: 451–462, https://doi.org/10.1016/j.immuni.2015.08.008.Search in Google Scholar PubMed PubMed Central

Burke-Gaffney, A., Callister, M.E., and Nakamura, H. (2005). Thioredoxin: friend or foe in human disease?. Trends Pharmacol. Sci. 26: 398–404, https://doi.org/10.1016/j.tips.2005.06.005.Search in Google Scholar PubMed

Cadenas, C., Franckenstein, D., Schmidt, M., Gehrmann, M., Hermes, M., Geppert, B., Schormann, W., Maccoux, L.J., Schug, M., Schumann, A., et al. (2010). Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Canc. Res. 12: R44, https://doi.org/10.1186/bcr2599.Search in Google Scholar PubMed PubMed Central

Camell, C.D., Günther, P., Lee, A., Goldberg, E.L., Spadaro, O., Youm, Y.H., Bartke, A., Hubbard, G.B., Ikeno, Y., Ruddle, N.H., et al. (2019). Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metabol. 30: 1024–1039, https://doi.org/10.1016/j.cmet.2019.10.006, e1026.Search in Google Scholar PubMed PubMed Central

Campisi, J. (2011). Cellular senescence: putting the paradoxes in perspective. Curr. Opin. Genet. Dev. 21: 107–112, https://doi.org/10.1016/j.gde.2010.10.005.Search in Google Scholar PubMed PubMed Central

Cantley, J., Grey, S.T., Maxwell, P.H., and Withers, D.J. (2010). The hypoxia response pathway and β-cell function. Diabetes Obes. Metabol. 12: 159–167, https://doi.org/10.1111/j.1463-1326.2010.01276.x.Suppl 2.Search in Google Scholar PubMed

Cha-Molstad, H., Saxena, G., Chen, J., and Shalev, A. (2009). Glucose-stimulated expression of Txnip is mediated by carbohydrate response element-binding protein, p300, and histone H4 acetylation in pancreatic beta cells. J. Biol. Chem. 284: 16898–16905, https://doi.org/10.1074/jbc.m109.010504.Search in Google Scholar

Chen, J., Fontes, G., Saxena, G., Poitout, V., and Shalev, A. (2010a). Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death. Diabetes 59: 440–447, https://doi.org/10.2337/db09-0949.Search in Google Scholar PubMed PubMed Central

Chen, J., Hui, S.T., Couto, F.M., Mungrue, I.N., Davis, D.B., Attie, A.D., Lusis, A.J., Davis, R.A., and Shalev, A. (2008). Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB Journal 22: 3581–3594, https://doi.org/10.1096/fj.08-111690.Search in Google Scholar PubMed PubMed Central

Chen, J., Young, M.E., Chatham, J.C., Crossman, D.K., Dell’Italia, L.J., and Shalev, A. (2016). TXNIP regulates myocardial fatty acid oxidation via miR-33a signaling. Am. J. Physiol. Heart Circ. Physiol. 311: H64–75, https://doi.org/10.1152/ajpheart.00151.2016.Search in Google Scholar

Chen, J.L., Merl, D., Peterson, C.W., Wu, J., Liu, P.Y., Yin, H., Muoio, D.M., Ayer, D.E., West, M., and Chi, J.T. (2010b). Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through MondoA. PLoS Genet. 6: e1001093, https://doi.org/10.1371/journal.pgen.1001093.Search in Google Scholar

Chen, K.S. and DeLuca, H.F. (1994). Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim. Biophys. Acta 1219: 26–32, https://doi.org/10.1016/0167-4781(94)90242-9.Search in Google Scholar

Chen, Y., Cai, J., Murphy, T.J., and Jones, D.P. (2002). Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J. Biol. Chem. 277: 33242–33248, https://doi.org/10.1074/jbc.m202026200.Search in Google Scholar PubMed

Chung, H.Y., Kim, D.H., Lee, E.K., Chung, K.W., Chung, S., Lee, B., Seo, A.Y., Chung, J.H., Jung, Y.S., Im, E., et al. (2019). Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging Dis. 10: 367–382, https://doi.org/10.14336/ad.2018.0324.Search in Google Scholar PubMed PubMed Central

Collet, J.F. and Messens, J. (2010). Structure, function, and mechanism of thioredoxin proteins. Antioxidants Redox Signal 13: 1205–1216, https://doi.org/10.1089/ars.2010.3114.Search in Google Scholar PubMed

Coppé, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5: 99–118, https://doi.org/10.1146/annurev-pathol-121808-102144.Search in Google Scholar PubMed PubMed Central

Cunningham, G.M., Roman, M.G., Flores, L.C., Hubbard, G.B., Salmon, A.B., Zhang, Y., Gelfond, J., and Ikeno, Y. (2015). The paradoxical role of thioredoxin on oxidative stress and aging. Arch. Biochem. Biophys. 576: 32–38, https://doi.org/10.1016/j.abb.2015.02.025.Search in Google Scholar PubMed

Dai, Y., Wang, S., Chang, S., Ren, D., Shali, S., Li, C., Yang, H., Huang, Z., and Ge, J. (2020). M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J. Mol. Cell. Cardiol.10.1016/j.yjmcc.2020.02.007Search in Google Scholar PubMed

Damdimopoulos, A.E., Miranda-Vizuete, A., Pelto-Huikko, M., Gustafsson, J.A., and Spyrou, G. (2002). Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J. Biol. Chem. 277: 33249–33257, https://doi.org/10.1074/jbc.m203036200.Search in Google Scholar PubMed

Davalli, P., Mitic, T., Caporali, A., Lauriola, A., and D’Arca, D. (2016). ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxidative Medicine and Cellular Longevity: 3565127, 2016.10.1155/2016/3565127Search in Google Scholar

De Marinis, Y., Cai, M., Bompada, P., Atac, D., Kotova, O., Johansson, M.E., Garcia-Vaz, E., Gomez, M.F., Laakso, M., and Groop, L. (2016). Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney Int. 89: 342–353, https://doi.org/10.1016/j.kint.2015.12.018.Search in Google Scholar

Devi, T.S., Hosoya, K., Terasaki, T., and Singh, L.P. (2013). Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: implications for diabetic retinopathy. Exp. Cell Res. 319: 1001–1012, https://doi.org/10.1016/j.yexcr.2013.01.012.Search in Google Scholar

Erkeland, S.J., Palande, K.K., Valkhof, M., Gits, J., Danen-van Oorschot, A., and Touw, I.P. (2009). The gene encoding thioredoxin-interacting protein (TXNIP) is a frequent virus integration site in virus-induced mouse leukemia and is overexpressed in a subset of AML patients. Leuk. Res. 33: 1367–1371, https://doi.org/10.1016/j.leukres.2009.02.027.Search in Google Scholar

Farrell, M.R., Rogers, L.K., Liu, Y., Welty, S.E., and Tipple, T.E. (2010). Thioredoxin-interacting protein inhibits hypoxia-inducible factor transcriptional activity. Free Radic. Biol. Med. 49: 1361–1367, https://doi.org/10.1016/j.freeradbiomed.2010.07.016.Search in Google Scholar

Filios, S.R., Xu, G., Chen, J., Hong, K., Jing, G., and Shalev, A. (2014). MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J. Biol. Chem. 289: 36275–36283, https://doi.org/10.1074/jbc.m114.592360.Search in Google Scholar

Gupta, R., Ghosh, S., Monks, B., DeOliveira, R.B., Tzeng, T.C., Kalantari, P., Nandy, A., Bhattacharjee, B., Chan, J., Ferreira, F., et al. (2014). RNA and β-hemolysin of group B Streptococcus induce interleukin-1β (IL-1β) by activating NLRP3 inflammasomes in mouse macrophages. J. Biol. Chem. 289: 13701–13705, https://doi.org/10.1074/jbc.c114.548982.Search in Google Scholar

Han, X., Wu, Y.C., Meng, M., Sun, Q.S., Gao, S.M., and Sun, H. (2018). Linarin prevents LPS-induced acute lung injury by suppressing oxidative stress and inflammation via inhibition of TXNIP/NLRP3 and NF-κB pathways. Int. J. Mol. Med. 42: 1460–1472.10.3892/ijmm.2018.3710Search in Google Scholar

Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298–300, https://doi.org/10.1093/geronj/11.3.298.Search in Google Scholar

Harman, D. (1998). Extending func.tional life span. Exp. Gerontol. 33: 95–112, https://doi.org/10.1016/s0531-5565(97)00059-4.Search in Google Scholar

Hattori, I., Takagi, Y., Nakamura, H., Nozaki, K., Bai, J., Kondo, N., Sugino, T., Nishimura, M., Hashimoto, N., and Yodoi, J. (2004). Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in mice. Antioxid Redox Signaling 6: 81–87, https://doi.org/10.1089/152308604771978372.Search in Google Scholar

Hirata, C.L., Ito, S., and Masutani, H. (2019). Thioredoxin interacting protein (Txnip) forms redox sensitive high molecular weight nucleoprotein complexes. Arch. Biochem. Biophys. 677: 108159, https://doi.org/10.1016/j.abb.2019.108159.Search in Google Scholar

Holmgren, A. (1995). Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3: 239–243, https://doi.org/10.1016/s0969-2126(01)00153-8.Search in Google Scholar

Holmgren, A., Johansson, C., Berndt, C., Lonn, M.E., Hudemann, C., and Lillig, C.H. (2005). Thiol redox control via thioredoxin and glutaredoxin systems. Biochem. Soc. Trans. 33: 1375–1377, https://doi.org/10.1042/bst0331375.Search in Google Scholar

Holmgren, A. and Sengupta, R. (2010). The use of thiols by ribonucleotide reductase. Free Radic. Biol. Med. 49: 1617–1628, https://doi.org/10.1016/j.freeradbiomed.2010.09.005.Search in Google Scholar PubMed

Holzerova, E., Danhauser, K., Haack, T.B., Kremer, L.S., Melcher, M., Ingold, I., Kobayashi, S., Terrile, C., Wolf, P., Schaper, J., et al. (2016). Human thioredoxin 2 deficiency impairs mitochondrial redox homeostasis and causes early-onset neurodegeneration. Brain 139: 346–354, https://doi.org/10.1093/brain/awv350.Search in Google Scholar PubMed

Hu, Q., Wei, B., Wei, L., Hua, K., Yu, X., Li, H., and Ji, H. (2015). Sodium tanshinone IIA sulfonate ameliorates ischemia-induced myocardial inflammation and lipid accumulation in Beagle dogs through NLRP3 inflammasome. Int. J. Cardiol. 196: 183–192, https://doi.org/10.1016/j.ijcard.2015.05.152.Search in Google Scholar PubMed

Huang, P.P., Fu, J., Liu, L.H., Wu, K.F., Liu, H.X., Qi, B.M., Liu, Y., and Qi, B.L. (2020). Honokiol antagonizes doxorubicin-induced cardiomyocyte senescence by inhibiting TXNIP-mediated NLRP3 inflammasome activation. Int. J. Mol. Med. 45: 186–194.10.3892/ijmm.2019.4393Search in Google Scholar PubMed PubMed Central

Huang, Q., Zhou, H.J., Zhang, H., Huang, Y., Hinojosa-Kirschenbaum, F., Fan, P., Yao, L., Belardinelli, L., Tellides, G., Giordano, F.J., et al. (2015). Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation 131: 1082–1097, https://doi.org/10.1161/circulationaha.114.012725.Search in Google Scholar PubMed PubMed Central

Hui, S.T., Andres, A.M., Miller, A.K., Spann, N.J., Potter, D.W., Post, N.M., Chen, A.Z., Sachithanantham, S., Jung, D.Y., Kim, J.K., et al. (2008). Txnip balances metabolic and growth signaling via PTEN disulfide reduction. Proc. Natl. Acad. Sci. U.S.A 105: 3921–3926, https://doi.org/10.1073/pnas.0800293105.Search in Google Scholar PubMed PubMed Central

Hui, T.Y., Sheth, S.S., Diffley, J.M., Potter, D.W., Lusis, A.J., Attie, A.D., and Davis, R.A. (2004). Mice lacking thioredoxin-interacting protein provide evidence linking cellular redox state to appropriate response to nutritional signals. J. Biol. Chem. 279: 24387–24393, https://doi.org/10.1074/jbc.m401280200.Search in Google Scholar PubMed

Huy, H., Song, H.Y., Kim, M.J., Kim, W.S., Kim, D.O., Byun, J.E., Lee, J., Park, Y.J., Kim, T.D., Yoon, S.R., et al. (2018). TXNIP regulates AKT-mediated cellular senescence by direct interaction under glucose-mediated metabolic stress. Aging Cell 17, https://doi.org/10.1111/acel.12836, e12836.Search in Google Scholar PubMed PubMed Central

Hwang, J., Suh, H.W., Jeon, Y.H., Hwang, E., Nguyen, L.T., Yeom, J., Lee, S.G., Lee, C., Kim, K.J., Kang, B.S., et al. (2014). The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat. Commun. 5: 2958, https://doi.org/10.1038/ncomms3958.Search in Google Scholar PubMed PubMed Central

Jeon, J.H., Lee, K.N., Hwang, C.Y., Kwon, K.S., You, K.H., and Choi, I. (2005). Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Canc. Res. 65: 4485–4489, https://doi.org/10.1158/0008-5472.can-04-2271.Search in Google Scholar

Jeong, M., Piao, Z.H., Kim, M.S., Lee, S.H., Yun, S., Sun, H.N., Yoon, S.R., Chung, J.W., Kim, T.D., Jeon, J.H., et al. (2009). Thioredoxin-interacting protein regulates hematopoietic stem cell quiescence and mobilization under stress conditions. J. Immunol. 183: 2495–2505, https://doi.org/10.4049/jimmunol.0804221.Search in Google Scholar PubMed

Ji, L., Wang, Q., Huang, F., An, T., Guo, F., Zhao, Y., Liu, Y., He, Y., Song, Y., and Qin, G. (2019). FOXO1 overexpression attenuates tubulointerstitial fibrosis and apoptosis in diabetic kidneys by ameliorating oxidative injury via TXNIP-TRX. Oxidative Medicine and Cellular Longevity: 3286928, 2019.10.1155/2019/3286928Search in Google Scholar PubMed PubMed Central

Jung, H., Kim, D.O., Byun, J.E., Kim, W.S., Kim, M.J., Song, H.Y., Kim, Y.K., Kang, D.K., Park, Y.J., Kim, T.D., et al. (2016). Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p38 kinase activity. Nat. Commun. 7: 13674, https://doi.org/10.1038/ncomms13674.Search in Google Scholar PubMed PubMed Central

Jung, H., Kim, M.J., Kim, D.O., Kim, W.S., Yoon, S.J., Park, Y.J., Yoon, S.R., Kim, T.D., Suh, H.W., Yun, S., et al. (2013). TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress. Cell Metabol. 18: 75–85, https://doi.org/10.1016/j.cmet.2013.06.002.Search in Google Scholar PubMed

Junn, E., Han, S.H., Im, J.Y., Yang, Y., Cho, E.W., Um, H.D., Kim, D.K., Lee, K.W., Han, P.L., Rhee, S.G., et al. (2000). Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J. Immunol. 164: 6287–6295, https://doi.org/10.4049/jimmunol.164.12.6287.Search in Google Scholar PubMed

Kim, G.S., Jung, J.E., Narasimhan, P., Sakata, H., and Chan, P.H. (2012). Induction of thioredoxin-interacting protein is mediated by oxidative stress, calcium, and glucose after brain injury in mice. Neurobiol. Dis. 46: 440–449, https://doi.org/10.1016/j.nbd.2012.02.008.Search in Google Scholar PubMed PubMed Central

Kim, M.J., Kim, W.S., Kim, D.O., Byun, J.E., Huy, H., Lee, S.Y., Song, H.Y., Park, Y.J., Kim, T.D., Yoon, S.R., et al. (2017). Macrophage migration inhibitory factor interacts with thioredoxin-interacting protein and induces NF-κB activity. Cell. Signal. 34: 110–120, https://doi.org/10.1016/j.cellsig.2017.03.007.Search in Google Scholar PubMed

Kim, S.K., Choe, J.Y., and Park, K.Y. (2019). TXNIP-mediated nuclear factor-κB signaling pathway and intracellular shifting of TXNIP in uric acid-induced NLRP3 inflammasome. Biochem. Biophys. Res. Commun. 511: 725–731, https://doi.org/10.1016/j.bbrc.2019.02.141.Search in Google Scholar PubMed

Klein Geltink, R.I., O’Sullivan, D., Corrado, M., Bremser, A., Buck, M.D., Buescher, J.M., Firat, E., Zhu, X., Niedermann, G., Caputa, G., et al. (2017). Mitochondrial priming by CD28. Cell 171: 385–397, https://doi.org/10.1016/j.cell.2017.08.018, e311.P.Search in Google Scholar PubMed PubMed Central

Kostromina, E., Wang, X., and Han, W. (2013). Altered islet morphology but normal islet secretory function in vitro in a mouse model with microvascular alterations in the pancreas. PloS One 8, e71277, https://doi.org/10.1371/journal.pone.0071277.Search in Google Scholar PubMed PubMed Central

Kuilman, T. and Peeper, D.S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Canc. 9: 81–94, https://doi.org/10.1038/nrc2560.Search in Google Scholar PubMed

Kwon, H.J., Won, Y.S., Nam, K.T., Yoon, Y.D., Jee, H., Yoon, W.K., Nam, K.H., Kang, J.S., Han, S.U., Choi, I.P., et al. (2012). Vitamin D₃ upregulated protein 1 deficiency promotes N-methyl-N-nitrosourea and Helicobacter pylori-induced gastric carcinogenesis in mice. Gut 61: 53–63, https://doi.org/10.1136/gutjnl-2011-300361.Search in Google Scholar PubMed

Kwon, H.J., Won, Y.S., Suh, H.W., Jeon, J.H., Shao, Y., Yoon, S.R., Chung, J.W., Kim, T.D., Kim, H.M., Nam, K.H., et al. (2010). Vitamin D3 upregulated protein 1 suppresses TNF-α-induced NF-κB activation in hepatocarcinogenesis. J. Immunol. 185: 3980–3989, https://doi.org/10.4049/jimmunol.1000990.Search in Google Scholar PubMed

Kwon, J., Lee, S.R., Yang, K.S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. U.S.A 101: 16419–16424, https://doi.org/10.1073/pnas.0407396101.Search in Google Scholar PubMed PubMed Central

Lane, T., Flam, B., Lockey, R., and Kolliputi, N. (2013). TXNIP shuttling: missing link between oxidative stress and inflammasome activation. Front. Physiol. 4: 50, https://doi.org/10.3389/fphys.2013.00050.Search in Google Scholar PubMed PubMed Central

Lee, K.N., Kang, H.S., Jeon, J.H., Kim, E.M., Yoon, S.R., Song, H., Lyu, C.Y., Piao, Z.H., Kim, S.U., Han, Y.H., et al. (2005). VDUP1 is required for the development of natural killer cells. Immunity 22: 195–208, https://doi.org/10.1016/j.immuni.2004.12.012.Search in Google Scholar PubMed

Lee, S., Min Kim, S., Dotimas, J., Li, L., Feener, E.P., Baldus, S., Myers, R.B., Chutkow, W.A., Patwari, P., Yoshioka, J., et al. (2014). Thioredoxin-interacting protein regulates protein disulfide isomerases and endoplasmic reticulum stress. EMBO Mol. Med. 6: 732–743, https://doi.org/10.15252/emmm.201302561.Search in Google Scholar PubMed PubMed Central

Leonardi, G.C., Accardi, G., Monastero, R., Nicoletti, F., and Libra, M. (2018). Ageing: from inflammation to cancer. Immun. Ageing 15: 1, https://doi.org/10.1186/s12979-017-0112-5.Search in Google Scholar PubMed PubMed Central

Lerner, A.G., Upton, J.P., Praveen, P.V., Ghosh, R., Nakagawa, Y., Igbaria, A., Shen, S., Nguyen, V., Backes, B.J., Heiman, M., et al. (2012). IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metabol. 16: 250–264, https://doi.org/10.1016/j.cmet.2012.07.007.Search in Google Scholar PubMed PubMed Central

Leveillard, T. and Ait-Ali, N. (2017). Cell signaling with extracellular thioredoxin and thioredoxin-like proteins: insight into their mechanisms of action. Oxidative Medicine and Cellular Longevity: 8475125, 2017.10.1155/2017/8475125Search in Google Scholar PubMed PubMed Central

Li, J., Yue, Z., Xiong, W., Sun, P., You, K., and Wang, J. (2017). TXNIP overexpression suppresses proliferation and induces apoptosis in SMMC7221 cells through ROS generation and MAPK pathway activation. Oncol. Rep. 37: 3369–3376, https://doi.org/10.3892/or.2017.5577.Search in Google Scholar PubMed

Lillig, C.H. and Holmgren, A. (2007). Thioredoxin and related molecules--from biology to health and disease. Antioxidants Redox Signal. 9: 25–47, https://doi.org/10.1089/ars.2007.9.25.Search in Google Scholar PubMed

Liu, S., Wu, X., Zong, M., Tempel, W., Loppnau, P., and Liu, Y. (2016a). Structural basis for a novel interaction between TXNIP and Vav2. FEBS Lett. 590: 857–865, https://doi.org/10.1002/1873-3468.12110.Search in Google Scholar PubMed

Liu, Y., Lau, J., Li, W., Tempel, W., Li, L., Dong, A., Narula, A., Qin, S., and Min, J. (2016b). Structural basis for the regulatory role of the PPxY motifs in the thioredoxin-interacting protein TXNIP. Biochem. J. 473: 179–187, https://doi.org/10.1042/bj20150830.Search in Google Scholar

Lowes, D.A. and Galley, H.F. (2011). Mitochondrial protection by the thioredoxin-2 and glutathione systems in an in vitro endothelial model of sepsis. Biochem. J. 436: 123–132, https://doi.org/10.1042/bj20102135.Search in Google Scholar

Lu, J. and Holmgren, A. (2012). Thioredoxin system in cell death progression. Antioxidants Redox Signal. 17: 1738–1747, https://doi.org/10.1089/ars.2012.4650.Search in Google Scholar PubMed

Ludwig, D.L., Kotanides, H., Le, T., Chavkin, D., Bohlen, P., and Witte, L. (2001). Cloning, genetic characterization, and chromosomal mapping of the mouse VDUP1 gene. Gene 269: 103–112, https://doi.org/10.1016/s0378-1119(01)00455-3.Search in Google Scholar

Malone, C.F., Emerson, C., Ingraham, R., Barbosa, W., Guerra, S., Yoon, H., Liu, L.L., Michor, F., Haigis, M., Macleod, K.F., et al. (2017). mTOR and HDAC inhibitors converge on the TXNIP/thioredoxin pathway to cause catastrophic oxidative stress and regression of RAS-driven tumors. Canc. Discov. 7: 1450–1463, https://doi.org/10.1158/2159-8290.cd-17-0177.Search in Google Scholar

Mandrup-Poulsen, T. (2001). beta-cell apoptosis: stimuli and signaling. Diabetes 50: S58–63, https://doi.org/10.2337/diabetes.50.2007.s58. Suppl 1.Search in Google Scholar PubMed

Marín-Aguilar, F., Lechuga-Vieco, A.V., Alcocer-Gómez, E., Castejón-Vega, B., Lucas, J., Garrido, C., Peralta-Garcia, A., Pérez-Pulido, A.J., Varela-López, A., Quiles, J.L., et al. (2020). NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell 19, e13050.10.1111/acel.13050Search in Google Scholar PubMed PubMed Central

Marín-Hernández, A., Gallardo-Pérez, J.C., Ralph, S.J., Rodríguez-Enríquez, S., and Moreno-Sánchez, R. (2009). HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev. Med. Chem. 9: 1084–1101, https://doi.org/10.2174/138955709788922610.Search in Google Scholar PubMed

Martindale, J.L. and Holbrook, N.J. (2002). Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192: 1–15, https://doi.org/10.1002/jcp.10119.Search in Google Scholar PubMed

Maruyama, J., Naguro, I., Takeda, K., and Ichijo, H. (2009). Stress-activated MAP kinase cascades in cellular senescence. Curr. Med. Chem. 16: 1229–1235, https://doi.org/10.2174/092986709787846613.Search in Google Scholar PubMed

Masutani, H., Yoshihara, E., Masaki, S., Chen, Z., and Yodoi, J. (2012). Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus. J. Clin. Biochem. Nutr. 50: 23–34.10.3164/jcbn.11-36SRSearch in Google Scholar PubMed PubMed Central

Mathis, D., Vence, L., and Benoist, C. (2001). beta-Cell death during progression to diabetes. Nature 414: 792–798, https://doi.org/10.1038/414792a.Search in Google Scholar PubMed

Matthews, J.R., Wakasugi, N., Virelizier, J.L., Yodoi, J., and Hay, R.T. (1992). Thioredoxin regulates the DNA binding activity of NF-κB by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 20: 3821–3830, https://doi.org/10.1093/nar/20.15.3821.Search in Google Scholar PubMed PubMed Central

Mikkelsen, R.B. and Wardman, P. (2003). Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22: 5734–5754, https://doi.org/10.1038/sj.onc.1206663.Search in Google Scholar PubMed

Minn, A.H., Hafele, C., and Shalev, A. (2005). Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 146: 2397–2405, https://doi.org/10.1210/en.2004-1378.Search in Google Scholar PubMed

Miranda-Vizuete, A., Damdimopoulos, A.E., Gustafsson, J., and Spyrou, G. (1997). Cloning, expression, and characterization of a novel Escherichia coli thioredoxin. J. Biol. Chem. 272: 30841–30847, https://doi.org/10.1074/jbc.272.49.30841.Search in Google Scholar PubMed

Miranda-Vizuete, A., Fierro González, J.C., Gahmon, G., Burghoorn, J., Navas, P., and Swoboda, P. (2006). Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons. FEBS Lett. 580: 484–490, https://doi.org/10.1016/j.febslet.2005.12.046.Search in Google Scholar PubMed

Mitsui, A., Hamuro, J., Nakamura, H., Kondo, N., Hirabayashi, Y., Ishizaki-Koizumi, S., Hirakawa, T., Inoue, T., and Yodoi, J. (2002). Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxidants Redox Signal. 4: 693–696, https://doi.org/10.1089/15230860260220201.Search in Google Scholar PubMed

Morgan, M.J. and Liu, Z.G. (2011). Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21: 103–115, https://doi.org/10.1038/cr.2010.178.Search in Google Scholar PubMed PubMed Central

Morrison, J.A., Pike, L.A., Sams, S.B., Sharma, V., Zhou, Q., Severson, J.J., Tan, A.C., Wood, W.M., and Haugen, B.R. (2014). Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol. Canc. 13: 62, https://doi.org/10.1186/1476-4598-13-62.Search in Google Scholar PubMed PubMed Central

Muoio, D.M. (2007). TXNIP links redox circuitry to glucose control. Cell Metabol. 5: 412–414, https://doi.org/10.1016/j.cmet.2007.05.011.Search in Google Scholar PubMed

Myers, R.B., Fomovsky, G.M., Lee, S., Tan, M., Wang, B.F., Patwari, P., and Yoshioka, J. (2016). Deletion of thioredoxin-interacting protein improves cardiac inotropic reserve in the streptozotocin-induced diabetic heart. Am. J. Physiol. Heart Circ. Physiol. 310: H1748–1759, https://doi.org/10.1152/ajpheart.00051.2016.Search in Google Scholar PubMed PubMed Central

Nishinaka, Y., Masutani, H., Oka, S., Matsuo, Y., Yamaguchi, Y., Nishio, K., Ishii, Y., and Yodoi, J. (2004). Importin alpha1 (Rch1) mediates nuclear translocation of thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein 1. J. Biol. Chem. 279: 37559–37565, https://doi.org/10.1074/jbc.m405473200.Search in Google Scholar

Nishiyama, A., Matsui, M., Iwata, S., Hirota, K., Masutani, H., Nakamura, H., Takagi, Y., Sono, H., Gon, Y., and Yodoi, J. (1999). Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J. Biol. Chem. 274: 21645–21650, https://doi.org/10.1074/jbc.274.31.21645.Search in Google Scholar PubMed

Oberacker, T., Bajorat, J., Ziola, S., Schroeder, A., Röth, D., Kastl, L., Edgar, B.A., Wagner, W., Gülow, K., and Krammer, P.H. (2018). Enhanced expression of thioredoxin-interacting-protein regulates oxidative DNA damage and aging. FEBS Lett. 592: 2297–2307, https://doi.org/10.1002/1873-3468.13156.Search in Google Scholar PubMed PubMed Central

Okamoto, T., Ogiwara, H., Hayashi, T., Mitsui, A., Kawabe, T., and Yodoi, J. (1992). Human thioredoxin/adult T cell leukemia-derived factor activates the enhancer binding protein of human immunodeficiency virus type 1 by thiol redox control mechanism. Int. Immunol. 4: 811–819, https://doi.org/10.1093/intimm/4.7.811.Search in Google Scholar PubMed

Oslowski, C.M., Hara, T., O’Sullivan-Murphy, B., Kanekura, K., Lu, S., Hara, M., Ishigaki, S., Zhu, L.J., Hayashi, E., Hui, S.T., et al. (2012). Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metabol. 16: 265–273, https://doi.org/10.1016/j.cmet.2012.07.005.Search in Google Scholar PubMed PubMed Central

Papaconstantinou, J. (2019). The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells 8, https://doi.org/10.3390/cells8111383.Search in Google Scholar PubMed PubMed Central

Parikh, H., Carlsson, E., Chutkow, W.A., Johansson, L.E., Storgaard, H., Poulsen, P., Saxena, R., Ladd, C., Schulze, P.C., Mazzini, M.J., et al. (2007). TXNIP regulates peripheral glucose metabolism in humans. PLoS Med. 4: e158, https://doi.org/10.1371/journal.pmed.0040158.Search in Google Scholar PubMed PubMed Central

Park, J.W., Lee, S.H., Woo, G.H., Kwon, H.J., and Kim, D.Y. (2018). Downregulation of TXNIP leads to high proliferative activity and estrogen-dependent cell growth in breast cancer. Biochem. Biophys. Res. Commun. 498: 566–572, https://doi.org/10.1016/j.bbrc.2018.03.020.Search in Google Scholar PubMed

Patwari, P., Chutkow, W.A., Cummings, K., Verstraeten, V.L., Lammerding, J., Schreiter, E.R., and Lee, R.T. (2009). Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins. J. Biol. Chem. 284: 24996–25003, https://doi.org/10.1074/jbc.m109.018093.Search in Google Scholar

Patwari, P., Higgins, L.J., Chutkow, W.A., Yoshioka, J., and Lee, R.T. (2006). The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange. J. Biol. Chem. 281: 21884–21891, https://doi.org/10.1074/jbc.m600427200.Search in Google Scholar

Pelicano, H., Xu, R.H., Du, M., Feng, L., Sasaki, R., Carew, J.S., Hu, Y., Ramdas, L., Hu, L., Keating, M.J., et al. (2006). Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. JCB 175: 913–923, https://doi.org/10.1083/jcb.200512100.Search in Google Scholar PubMed PubMed Central

Pérez, V.I., Cortez, L.A., Lew, C.M., Rodriguez, M., Webb, C.R., Van Remmen, H., Chaudhuri, A., Qi, W., Lee, S., Bokov, A., et al. (2011). Thioredoxin 1 overexpression extends mainly the earlier part of life span in mice. J. Gerontol. A: Biol. Sci. Med. Sci. 66: 1286–1299, https://doi.org/10.1093/gerona/glr125.Search in Google Scholar PubMed PubMed Central

Perrone, L., Devi, T.S., Hosoya, K., Terasaki, T., and Singh, L.P. (2009). Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J. Cell. Physiol. 221: 262–272, https://doi.org/10.1002/jcp.21852.Search in Google Scholar PubMed

Qiao, S., Dennis, M., Song, X., Vadysirisack, D. D., Salunke, D., Nash, Z., Yang, Z., Liesa, M., Yoshioka, J., Matsuzawa, S., et al. (2015). A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat. Commun. 6: 7014, https://doi.org/10.1038/ncomms8014.Search in Google Scholar PubMed PubMed Central

Ramus, S.M., Cilensek, I., Petrovic, M.G., Soucek, M., Kruzliak, P., and Petrovic, D. (2016). Single nucleotide polymorphisms in the Trx2/TXNIP and TrxR2 genes of the mitochondrial thioredoxin antioxidant system and the risk of diabetic retinopathy in patients with Type 2 diabetes mellitus. J. Diabetes Complicat. 30: 192–198, https://doi.org/10.1016/j.jdiacomp.2015.11.021.Search in Google Scholar PubMed

Robertson, R.P., Harmon, J., Tran, P.O., Tanaka, Y., and Takahashi, H. (2003). Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52: 581–587, https://doi.org/10.2337/diabetes.52.3.581.Search in Google Scholar PubMed

Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., Agapova, L.S., Kravchenko, J.E., and Chumakov, P.M. (2005). The antioxidant function of the p53 tumor suppressor. Nat. Med. 11: 1306–1313, https://doi.org/10.1038/nm1320.Search in Google Scholar PubMed PubMed Central

Sanada, F., Taniyama, Y., Muratsu, J., Otsu, R., Shimizu, H., Rakugi, H., and Morishita, R. (2018). Source of chronic inflammation in aging. Front Cardiovasc Med 5: 12, https://doi.org/10.3389/fcvm.2018.00012.Search in Google Scholar PubMed PubMed Central

Sawaoka, H., Kawano, S., Tsuji, S., Tsujii, M., Gunawan, E.S., Takei, Y., Nagano, K., and Hori, M. (1998). Cyclooxygenase-2 inhibitors suppress the growth of gastric cancer xenografts via induction of apoptosis in nude mice. Am. J. Physiol. 274: G1061–1067, https://doi.org/10.1152/ajpgi.1998.274.6.g1061.Search in Google Scholar PubMed

Saxena, G., Chen, J., and Shalev, A. (2010). Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J. Biol. Chem. 285: 3997–4005, https://doi.org/10.1074/jbc.m109.034421.Search in Google Scholar PubMed PubMed Central

Schroder, K., Zhou, R., and Tschopp, J. (2010). The NLRP3 inflammasome: a sensor for metabolic danger?. Science 327: 296–300, https://doi.org/10.1126/science.1184003.Search in Google Scholar PubMed

Schulze, P.C., Yoshioka, J., Takahashi, T., He, Z., King, G.L., and Lee, R.T. (2004). Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J. Biol. Chem. 279: 30369–30374, https://doi.org/10.1074/jbc.m400549200.Search in Google Scholar

Shalev, A. (2014). Minireview: thioredoxin-interacting protein: regulation and function in the pancreatic β-cell. Mol. Endocrinol. 28: 1211–1220, https://doi.org/10.1210/me.2014-1095.Search in Google Scholar PubMed PubMed Central

Sheth, S.S., Bodnar, J.S., Ghazalpour, A., Thipphavong, C.K., Tsutsumi, S., Tward, A.D., Demant, P., Kodama, T., Aburatani, H., and Lusis, A.J. (2006). Hepatocellular carcinoma in Txnip-deficient mice. Oncogene 25: 3528–3536, https://doi.org/10.1038/sj.onc.1209394.Search in Google Scholar PubMed

Shin, D., Jeon, J.H., Jeong, M., Suh, H.W., Kim, S., Kim, H.C., Moon, O.S., Kim, Y.S., Chung, J.W., Yoon, S.R., et al. (2008a). VDUP1 mediates nuclear export of HIF1alpha via CRM1-dependent pathway. Biochim. Biophys. Acta 1783: 838–848, https://doi.org/10.1016/j.bbamcr.2007.10.012.Search in Google Scholar PubMed

Shin, K.H., Kim, R.H., Kim, R.H., Kang, M.K., and Park, N.H. (2008b). hnRNP G elicits tumor-suppressive activity in part by upregulating the expression of Txnip. Biochem. Biophys. Res. Commun. 372: 880–885, https://doi.org/10.1016/j.bbrc.2008.05.175.10.1016/j.bbrc.2008.05.175Search in Google Scholar PubMed PubMed Central

Son, A., Nakamura, H., Okuyama, H., Oka, S., Yoshihara, E., Liu, W., Matsuo, Y., Kondo, N., Masutani, H., Ishii, Y., et al. (2008). Dendritic cells derived from TBP-2-deficient mice are defective in inducing T cell responses. Eur. J. Immunol. 38: 1358–1367, https://doi.org/10.1002/eji.200737939.Search in Google Scholar PubMed

Spindel, O.N., World, C., and Berk, B.C. (2012a). Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxidants Redox Signal. 16: 587–596, https://doi.org/10.1089/ars.2011.4137.Search in Google Scholar PubMed PubMed Central

Spindel, O.N., Yan, C., and Berk, B.C. (2012b). Thioredoxin-interacting protein mediates nuclear-to-plasma membrane communication: role in vascular endothelial growth factor 2 signaling. Arterioscler. Thromb. Vasc. Biol. 32: 1264–1270, https://doi.org/10.1161/atvbaha.111.244681.Search in Google Scholar

Stoltzman, C.A., Peterson, C.W., Breen, K.T., Muoio, D.M., Billin, A.N., and Ayer, D.E. (2008). Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc. Natl. Acad. Sci. U.S.A 105: 6912–6917, https://doi.org/10.1073/pnas.0712199105.Search in Google Scholar PubMed PubMed Central

Sun, S. C. and Liu, Z. G. (2011). A special issue on NF-κB signaling and function. Cell Res. 21: 1–2, https://doi.org/10.1038/cr.2011.1.Search in Google Scholar PubMed PubMed Central

Sutterwala, F.S., Haasken, S., and Cassel, S.L. (2014). Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci. 1319: 82–95, https://doi.org/10.1111/nyas.12458.Search in Google Scholar PubMed PubMed Central

Svensson, M.J. and Larsson, J. (2007). Thioredoxin-2 affects lifespan and oxidative stress in Drosophila. Hereditas 144: 25–32.10.1111/j.2007.0018-0661.01990.xSearch in Google Scholar PubMed

Tagaya, Y., Maeda, Y., Mitsui, A., Kondo, N., Matsui, H., Hamuro, J., Brown, N., Arai, K., Yokota, T., Wakasugi, H., et al. (1989). ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J. 8: 757–764, https://doi.org/10.1002/j.1460-2075.1989.tb03436.x.Search in Google Scholar PubMed PubMed Central

Takagi, Y., Mitsui, A., Nishiyama, A., Nozaki, K., Sono, H., Gon, Y., Hashimoto, N., and Yodoi, J. (1999). Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc. Natl. Acad. Sci. U.S.A 96: 4131–4136, https://doi.org/10.1073/pnas.96.7.4131.Search in Google Scholar PubMed PubMed Central

Tanaka, T., Hosoi, F., Yamaguchi-Iwai, Y., Nakamura, H., Masutani, H., Ueda, S., Nishiyama, A., Takeda, S., Wada, H., Spyrou, G., et al. (2002). Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 21: 1695–1703, https://doi.org/10.1093/emboj/21.7.1695.Search in Google Scholar PubMed PubMed Central

Thompson, J.E. and Thompson, C.B. (2004). Putting the rap on akt. J. Clin. Oncol. 22: 4217–4226, https://doi.org/10.1200/jco.2004.01.103.Search in Google Scholar PubMed

Tinkov, A.A., Bjorklund, G., Skalny, A.V., Holmgren, A., Skalnaya, M.G., Chirumbolo, S., and Aaseth, J. (2018). The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker?. Cell. Mol. Life Sci. 75: 1567–1586, https://doi.org/10.1007/s00018-018-2745-8.Search in Google Scholar PubMed

Tsuda, M., Ootaka, R., Ohkura, C., Kishita, Y., Seong, K.H., Matsuo, T., and Aigaki, T. (2010). Loss of Trx-2 enhances oxidative stress-dependent phenotypes in Drosophila. FEBS Lett. 584: 3398–3401, https://doi.org/10.1016/j.febslet.2010.06.034.Search in Google Scholar PubMed

van Greevenbroek, M.M., Vermeulen, V.M., Feskens, E.J., Evelo, C.T., Kruijshoop, M., Hoebee, B., van der Kallen, C.J., and de Bruin, T.W. (2007). Genetic variation in thioredoxin interacting protein (TXNIP) is associated with hypertriglyceridaemia and blood pressure in diabetes mellitus. Diabet. Med. 24: 498–504, https://doi.org/10.1111/j.1464-5491.2007.02109.x.Search in Google Scholar PubMed

Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033, https://doi.org/10.1126/science.1160809.Search in Google Scholar PubMed PubMed Central

Vousden, K.H. and Lane, D.P. (2007). p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8: 275–283, https://doi.org/10.1038/nrm2147.Search in Google Scholar PubMed

Waldhart, A.N., Dykstra, H., Peck, A.S., Boguslawski, E.A., Madaj, Z.B., Wen, J., Veldkamp, K., Hollowell, M., Zheng, B., Cantley, L.C., et al. (2017). Phosphorylation of TXNIP by AKT mediates acute influx of glucose in response to insulin. Cell Rep. 19: 2005–2013, https://doi.org/10.1016/j.celrep.2017.05.041.Search in Google Scholar PubMed PubMed Central

Wang, D., Masutani, H., Oka, S., Tanaka, T., Yamaguchi-Iwai, Y., Nakamura, H., and Yodoi, J. (2006). Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cells. J. Biol. Chem. 281: 7384–7391, https://doi.org/10.1074/jbc.m509876200.Search in Google Scholar PubMed

Watanabe, R., Nakamura, H., Masutani, H., and Yodoi, J. (2010). Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacology and Therapeutics 127: 261–270, https://doi.org/10.1016/j.pharmthera.2010.04.004.Search in Google Scholar PubMed

Wei, H., Bu, R., Yang, Q., Jia, J., Li, T., Wang, Q., and Chen, Y. (2019). Exendin-4 protects against hyperglycemia-induced cardiomyocyte pyroptosis via the AMPK-TXNIP pathway. J Diabetes Res: 8905917, 2019.10.1155/2019/8905917Search in Google Scholar PubMed PubMed Central

Welsh, S.J., Bellamy, W.T., Briehl, M.M., and Powis, G. (2002). The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Canc. Res. 62: 5089–5095.Search in Google Scholar

Wen, H., Ting, J.P., and O’Neill, L.A. (2012). A role for the NLRP3 inflammasome in metabolic diseases--did Warburg miss inflammation?. Nat. Immunol. 13: 352–357, https://doi.org/10.1038/ni.2228.Search in Google Scholar PubMed PubMed Central

Wijesekara, N., Konrad, D., Eweida, M., Jefferies, C., Liadis, N., Giacca, A., Crackower, M., Suzuki, A., Mak, T.W., Kahn, C.R., et al. (2005). Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol. Cell Biol. 25: 1135–1145, https://doi.org/10.1128/mcb.25.3.1135-1145.2005.Search in Google Scholar

Williams, C.H., Arscott, L. D., Muller, S., Lennon, B.W., Ludwig, M.L., Wang, P.F., Veine, D.M., Becker, K., and Schirmer, R.H. (2000). Thioredoxin reductase two modes of catalysis have evolved. Eur. J. Biochem. 267: 6110–6117, https://doi.org/10.1046/j.1432-1327.2000.01702.x.Search in Google Scholar PubMed

World, C., Spindel, O.N., and Berk, B.C. (2011). Thioredoxin-interacting protein mediates TRX1 translocation to the plasma membrane in response to tumor necrosis factor-α: a key mechanism for vascular endothelial growth factor receptor-2 transactivation by reactive oxygen species. Arterioscler. Thromb. Vasc. Biol. 31: 1890–1897, https://doi.org/10.1161/atvbaha.111.226340.Search in Google Scholar PubMed

Wouters, M.A., George, R.A., and Haworth, N.L. (2007). “Forbidden” disulfides: their role as redox switches. Curr. Protein Pept. Sci. 8: 484–495, https://doi.org/10.2174/138920307782411464.Search in Google Scholar PubMed

Wu, C.Y., Wang, C.J., Tseng, C.C., Chen, H.P., Wu, M.S., Lin, J.T., Inoue, H., and Chen, G.H. (2005). Helicobacter pylori promote gastric cancer cells invasion through a NF-kappaB and COX-2-mediated pathway. World J. Gastroenterol. 11: 3197–3203, https://doi.org/10.3748/wjg.v11.i21.3197.Search in Google Scholar PubMed PubMed Central

Wu, J., Xu, X., Li, Y., Kou, J., Huang, F., Liu, B., and Liu, K. (2014). Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. Eur. J. Pharmacol. 745: 59–68, https://doi.org/10.1016/j.ejphar.2014.09.046.Search in Google Scholar PubMed

Wu, N., Zheng, B., Shaywitz, A., Dagon, Y., Tower, C., Bellinger, G., Shen, C.H., Wen, J., Asara, J., McGraw, T.E., et al. (2013). AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell 49: 1167–1175, https://doi.org/10.1016/j.molcel.2013.01.035.Search in Google Scholar PubMed PubMed Central

Xu, G., Chen, J., Jing, G., and Shalev, A. (2013). Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat. Med. 19: 1141–1146, https://doi.org/10.1038/nm.3287.Search in Google Scholar PubMed PubMed Central

Yamawaki, H., Pan, S., Lee, R.T., and Berk, B.C. (2005). Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J. Clin. Invest. 115: 733–738, https://doi.org/10.1172/jci200523001.Search in Google Scholar

Ye, X., Zuo, D., Yu, L., Zhang, L., Tang, J., Cui, C., Bao, L., Zan, K., Zhang, Z., Yang, X., et al. (2017). ROS/TXNIP pathway contributes to thrombin induced NLRP3 inflammasome activation and cell apoptosis in microglia. Biochem. Biophys. Res. Commun. 485: 499–505, https://doi.org/10.1016/j.bbrc.2017.02.019.Search in Google Scholar PubMed

Yin, Y., Zhou, Z., Liu, W., Chang, Q., Sun, G., and Dai, Y. (2017). Vascular endothelial cells senescence is associated with NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation via reactive oxygen species (ROS)/thioredoxin-interacting protein (TXNIP) pathway. Int. J. Biochem. Cell Biol. 84: 22–34, https://doi.org/10.1016/j.biocel.2017.01.001.Search in Google Scholar PubMed

Yoshihara, E., Masaki, S., Matsuo, Y., Chen, Z., Tian, H., and Yodoi, J. (2014). Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front. Immunol. 4: 514, https://doi.org/10.3389/fimmu.2013.00514.Search in Google Scholar PubMed PubMed Central

Yoshioka, J., Chutkow, W.A., Lee, S., Kim, J.B., Yan, J., Tian, R., Lindsey, M.L., Feener, E.P., Seidman, C.E., Seidman, J.G., et al. (2012). Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. J. Clin. Invest. 122: 267–279, https://doi.org/10.1172/jci44927.Search in Google Scholar

Youm, Y.H., Grant, R.W., McCabe, L.R., Albarado, D.C., Nguyen, K.Y., Ravussin, A., Pistell, P., Newman, S., Carter, R., Laque, A., et al. (2013). Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metabol. 18: 519–532, https://doi.org/10.1016/j.cmet.2013.09.010.Search in Google Scholar PubMed PubMed Central

Zhang, C., Moriguchi, T., Kajihara, M., Esaki, R., Harada, A., Shimohata, H., Oishi, H., Hamada, M., Morito, N., Hasegawa, K., et al. (2005). MafA is a key regulator of glucose-stimulated insulin secretion. Mol. Cell Biol. 25: 4969–4976, https://doi.org/10.1128/mcb.25.12.4969-4976.2005.Search in Google Scholar PubMed PubMed Central

Zhang, P., Wang, C., Gao, K., Wang, D., Mao, J., An, J., Xu, C., Wu, D., Yu, H., Liu, J.O., et al. (2010). The ubiquitin ligase itch regulates apoptosis by targeting thioredoxin-interacting protein for ubiquitin-dependent degradation. J. Biol. Chem. 285: 8869–8879, https://doi.org/10.1074/jbc.m109.063321.Search in Google Scholar PubMed PubMed Central

Zhou, R., Tardivel, A., Thorens, B., Choi, I., and Tschopp, J. (2010). Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11: 136–140, https://doi.org/10.1038/ni.1831.Search in Google Scholar PubMed

Zhou, Y., Zhou, J., Lu, X., Tan, T.Z., and Chng, W.J. (2018). BET Bromodomain inhibition promotes De-repression of TXNIP and activation of ASK1-MAPK pathway in acute myeloid leukemia. BMC Canc. 18: 731, https://doi.org/10.1186/s12885-018-4661-6.Search in Google Scholar PubMed PubMed Central

Received: 2020-05-11
Accepted: 2020-08-13
Published Online: 2020-08-31
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.6.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2020-0181/html
Scroll to top button