Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 7, 2020

Small-molecule modulation of p53 protein-protein interactions

  • Ave Kuusk , Helen Boyd , Hongming Chen and Christian Ottmann ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Small-molecule modulation of protein-protein interactions (PPIs) is a very promising but also challenging area in drug discovery. The tumor suppressor protein p53 is one of the most frequently altered proteins in human cancers, making it an attractive target in oncology. 14-3-3 proteins have been shown to bind to and positively regulate p53 activity by protecting it from MDM2-dependent degradation or activating its DNA binding affinity. PPIs can be modulated by inhibiting or stabilizing specific interactions by small molecules. Whereas inhibition has been widely explored by the pharmaceutical industry and academia, the opposite strategy of stabilizing PPIs still remains relatively underexploited. This is rather interesting considering the number of natural compounds like rapamycin, forskolin and fusicoccin that exert their activity by stabilizing specific PPIs. In this review, we give an overview of 14-3-3 interactions with p53, explain isoform specific stabilization of the tumor suppressor protein, explore the approach of stabilizing the 14-3-3σ-p53 complex and summarize some promising small molecules inhibiting the p53-MDM2 protein-protein interaction.

Acknowledgments

We acknowledge funding from the European Union through the AEGIS project, Funder Id: http://dx.doi.org/10.13039/501100000780, H2020-MSCA-ITN-2015, grant number 67555.

References

Aguilar, A., Lu, J., Liu, L., Du, D., Bernard, D., McEachern, D., Przybranowski, S., Li, X., Luo, R., Wen, B., et al. (2017). Discovery of 4-((3′R,4′S,5′R)-6-Chloro-4′-(3-chloro-2-fluorophenyl)-1′-ethyl-2-oxodispiro[cyclohexane-1,2′-pyrrolidine-3′,3-indoline]-5′-carboxamido)bicyclo[2.2.2]octane-1-carboxylic acid (AA-115/APG-115): a potent and orally active murine double minute 2. J. Med. Chem. 60, 2819–2839.10.1021/acs.jmedchem.6b01665Search in Google Scholar

Aitken, A. (2006). 14-3-3 proteins: a historic overview. Semin. Cancer Biol. 16, 162–172.10.1016/j.semcancer.2006.03.005Search in Google Scholar

Aitken, A., Collinge, D.B., van Heusden, B.P., Isobe, T., Roseboom, P.H., Rosenfeld, G., Soll, J. (1992). 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem. Sci. 17, 498–501.10.1016/0968-0004(92)90339-BSearch in Google Scholar

Andrei, S.A., Sijbesma, E., Hann, M., Davis, J., O’Mahony, G., Perry, M.W.D., Karawajczyk, A., Eickhoff, J., Brunsveld, L., Doveston, R.G., et al. (2017). Stabilization of protein–protein interactions in drug discovery. Expert Opin. Drug Discov. 12, 925–940.10.1080/17460441.2017.1346608Search in Google Scholar PubMed

Arkin, M.R, Tang, Y., Wells, J.A. (2014). Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem. Biol. 21, 1102–1114.10.1016/j.chembiol.2014.09.001Search in Google Scholar PubMed PubMed Central

Benzinger, A., Popowicz, G.M., Joy, J.K., Majumdar, S., Holak, T.A., Hermeking, H. (2006). The crystal structure of the non-liganded 14-3-3σ protein: insights into determinants of isoform specific ligand binding and dimerization. Cell Res.15, 219–227.10.1038/sj.cr.7290290Search in Google Scholar PubMed

Bernard, D., Zhao, Y., Wang, S. (2012). AM-8553: a novel MDM2 inhibitor with a promising outlook for potential clinical development. J. Med. Chem. 55, 4934–4935.10.1021/jm3007068Search in Google Scholar PubMed

Bier, D., Thiel, P., Briels, J., Ottmann, C. (2015). Stabilization of protein-protein interactions in chemical biology and drug discovery. Prog. Biophys. Mol. Biol. 19, 10–19.10.1016/j.pbiomolbio.2015.05.002Search in Google Scholar PubMed

Bier, D., Bartel, M., Sies, K., Halbach, S., Higuchi, Y., Haranosono, Y., Brummer, T., Kato, N., Ottmann, C. (2016). Small-molecule stabilization of the 14-3-3/Gab2 protein-protein interaction (PPI) interface. ChemMedChem 11, 911–918.10.1002/cmdc.201500484Search in Google Scholar PubMed

Brandt, T., Petrovich, M., Joerger, A.C., Veprintsev, D.B. (2009). Conservation of DNA-binding specificity and oligomerisation properties within the p53 family. BMC Genomics 10, 1–14.10.1186/1471-2164-10-628Search in Google Scholar PubMed PubMed Central

Braun, P., Gingras, A.C. (2012). History of protein-protein interactions: from egg-white. Proteomics 12, 1478–1498.10.1002/pmic.201100563Search in Google Scholar PubMed

Bridges, D., Moorhead, G.B. (2005). 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 296, re10.10.1126/stke.2962005re10Search in Google Scholar PubMed

Brown, C.J., Lain, S., Verma, C.S., Fersht, A.R., Lane, D.P. (2009). Awakening guardian angels: drugging the P53 pathway. Nat. Rev. Cancer. 9, 862–873.10.1038/nrc2763Search in Google Scholar PubMed

Bustos, D.M. (2012). The role of protein disorder in the 14-3-3 interaction network. Mol. Biosyst. 8, 178–184.10.1039/C1MB05216KSearch in Google Scholar

Caulder, D.L., Raymond, K.N. (1999). Supermolecules by design. Acc. Chem. Res. 32, 975–982.10.1021/ar970224vSearch in Google Scholar

Che, Y., Brooks, B.R., Marshall, G.R. (2006). Development of small molecules designed to modulate protein-protein interactions. J. Comput. Aided Mol. Des. 20, 109–130.10.1007/s10822-006-9040-8Search in Google Scholar PubMed

Chène, P. (2001). The role of tetramerization in p53 function. Oncogene 20, 2611–2617.10.1038/sj.onc.1204373Search in Google Scholar PubMed

Cho, Y.C., Park, J.E., Park, B.C., Kim, J.H., Jeong, D.G., Park, S.G., Cho, S. (2015). Cell cycle-dependent Cdc25C phosphatase determines cell survival by regulating apoptosis signal-regulating kinase 1. Cell Death Differ. 22, 1605–1617.10.1038/cdd.2015.2Search in Google Scholar PubMed PubMed Central

Cierpicki, T., Grembecka, J. (2015). Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies? Immunol. Rev. 263, 279–301.10.1111/imr.12244Search in Google Scholar PubMed PubMed Central

Cornell, B., Toyo-Oka, K. (2017). 14-3-3 proteins in brain development: neurogenesis, neuronal migration and neuromorphogenesis. Front. Mol. Neurosci. 10, 1–17.10.3389/fnmol.2017.00318Search in Google Scholar PubMed PubMed Central

De Boer, A.H., de Vries-van Leeuwen, I.J. (2012). Fusicoccanes: diterpenes with surprising biological functions. Trends Plant Sci. 17, 360–368.10.1016/j.tplants.2012.02.007Search in Google Scholar PubMed

Ding, K., Lu, Y., Nikolovska-Coleska, Z., Qiu, S., Ding, Y., Gao, W., Stuckey, J., Krajewski, K., Roller, P.P., Tomita, Y., et al. (2005). Structure-based design of potent non-peptide MDM2 inhibitors. J. Am. Chem. Soc. 27, 10130–10131.10.1021/ja051147zSearch in Google Scholar PubMed

Ding, K., Lu, Y., Nikolovska-Coleska, Z., Wang, G., Qiu, S., Shangary, S., Gao, W., Qin, D., Stuckey, J., Krajewski, K., et al. (2006). Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J. Med. Chem. 49, 3432–3435.10.1021/jm051122aSearch in Google Scholar PubMed

Ding, Q., Zhang, Z., Liu, J.J., Jiang, N., Zhang, J., Ross, T.M., Chu, X.J., Bartkovitz, D., Podlaski, F., Janson, C., et al. (2013). Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J. Med. Chem. 56, 5979–5983.10.1021/jm400487cSearch in Google Scholar PubMed

Doveston, R.G, Kuusk, A., Andrei, S.A., Leysen, S., Cao, Q., Castaldi, M.P., Hendricks, A., Brunsveld, L., Chen, H., Boyd, H., et al. (2017). Small-molecule stabilization of the p53 – 14-3-3 protein-protein interaction. FEBS Lett. 591, 2449–2457.10.1002/1873-3468.12723Search in Google Scholar PubMed

Du, Y., Masters, S.C., Khuri, F.R., Fu, H. (2006). Monitoring 14-3-3 protein interactions with a homogeneous fluorescence polarization assay. J. Biomol. Screen. 11, 269–276.10.1177/1087057105284862Search in Google Scholar PubMed

Fu, H., Subramanian, R.R., Masters, S.C. (2000). 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617–647.10.1146/annurev.pharmtox.40.1.617Search in Google Scholar PubMed

Gardino, A.K., Smerdon, S.J., Yaffe, M.B. (2006). Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 16, 173–182.10.1016/j.semcancer.2006.03.007Search in Google Scholar PubMed

German, E.A., Ross, J.E., Knipe, P.C., Don, M.F., Thompson, S., Hamilton, A.D. (2015). B-strand mimetic foldamers rigidified through dipolar repulsion. Angew. Chem. Int. Ed. 54, 2649–2652.10.1002/anie.201410290Search in Google Scholar PubMed

Grasberger, B.L., Lu, T., Schubert, C., Parks, D.J., Carver, T.E., Koblish, H.K., Cummings, M.D., LaFrance, L.V., Milkiewicz, K.L., Calvo, R.R., et al. (2005). Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J. Med. Chem. 48, 909–912.10.1021/jm049137gSearch in Google Scholar PubMed

Guarracino, D.A., Arora, P.S. (2009). Making strides in peptide-based therapeutics. Chem. Biol. 16, 919–920.10.1016/j.chembiol.2009.09.005Search in Google Scholar

Hermeking, H. (2003). The 14-3-3 cancer connection. Nat. Rev. Cancer. 3, 931–943.10.1038/nrc1230Search in Google Scholar

Hermeking, H., Lengauer, C., Polyak, K., He, T.C., Zhang, L., Thiagalingam, S., Kinzler, K.W., Vogelstein, B. (1997). 14-3-3sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell. 1, 3–11.10.1016/S1097-2765(00)80002-7Search in Google Scholar

Kaplan, A., Ottmann, C., Fournier, A.E. (2017). 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases. Pharmacol. Res. 125, 114–121.10.1016/j.phrs.2017.09.007Search in Google Scholar PubMed

Kocik, J., Machula, M., Wisniewska, A., Surmiak, E., Holak, T.A., Skalniak, L. (2019). Helping the released guardian: drug combinations for supporting the anticancer activity of HDM2 (MDM2) antagonists. Cancers (Basel) 11, pii: E1014.10.3390/cancers11071014Search in Google Scholar PubMed PubMed Central

Kuusk, A., Neves, J.F., Bravo Rodriguez, K., Gunnarsson, A., Ruiz-Blanco, Y.B., Ehrmann, M., Chen, H., Landrieu, I., Sanchez-Garcia, E., Boyd, H., et al. (2020). Adoption of a turn conformation drives the binding affinity of p53 C-terminal domain peptides to 14-3-3σ. ACS Chem. Biol. 15, 262–271.10.1021/acschembio.9b00893Search in Google Scholar PubMed

Lane, D.P. (1992). Cancer: p53, guardian of the genome. Nature 358, 15–16.10.1038/358015a0Search in Google Scholar PubMed

Laronga, C., Yang, H.Y., Neal, C., Lee, M.H. (2000). Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J. Biol. Chem. 275, 23106–23112.10.1074/jbc.M905616199Search in Google Scholar PubMed

Lee, M.H., Lozano, G. (2006). Regulation of the p53-MDM2 Pathway by 14-3-3 σ and Other Proteins. Semin Cancer Biol. 16, 225–234.10.1016/j.semcancer.2006.03.009Search in Google Scholar PubMed

Li, C., Lin, H., Dubcovsky, J. (2015). Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. Plant J. 84, 70–82.10.1111/tpj.12960Search in Google Scholar PubMed PubMed Central

Liu, Y., Wang, X., Wang, G., Yang, Y., Yuan, Y., Ouyang, L. (2019). The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur. J. Med. Chem. 176, 92–104.10.1016/j.ejmech.2019.05.018Search in Google Scholar PubMed

Marre, E. (1979). Fusicoccin: a tool in plant physiology. Ann. Rev. Plant Physiol. 30, 273–288.10.1146/annurev.pp.30.060179.001421Search in Google Scholar

Merkel, O., Taylor, N., Prutsch, N., Staber, P.B., Moriggl, R., Turner, S.D., Kenner, L. (2017). When the guardian sleeps: reactivation of the p53 pathway in cancer. Mutat. Res. 773, 1–13.10.1016/j.mrrev.2017.02.003Search in Google Scholar PubMed

Milroy, L.G, Bartel, M., Henen, M.A., Leysen, S., Adriaans, J.M, Brunsveld, L., Landrieu, I., Ottmann, C. (2015). Stabilizer-guided inhibition of protein-protein interactions. Angew. Chem. Int. Ed. 54, 15720–15724.10.1002/anie.201507976Search in Google Scholar PubMed

Molzan, M., Schumacher, B., Ottmann, C., Baljuls, A., Polzien, L., Weyand, M., Thiel, P., Rose, R., Rose, M., Kuhenne, P., et al. (2010). Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol. Cell Biol. 30, 4698–4711.10.1128/MCB.01636-09Search in Google Scholar PubMed PubMed Central

Nguyen, D., Liao, W., Zeng, S.X., Lu, H. (2017). Reviving the guardian of the genome: small molecule activators of p53. Pharmacol. Ther. 178, 92–108.10.1016/j.pharmthera.2017.03.013Search in Google Scholar PubMed PubMed Central

Nooren, I.M.A, Thornton, J.M. (2003). Diversity of protein-protein interactions. EMBO J. 22, 3486–3492.10.1093/emboj/cdg359Search in Google Scholar PubMed PubMed Central

Obsil, T., Obsilova, V. (2011). Structural basis of 14-3-3 protein functions. Semin. Cell Dev. Biol. 22, 663–672.10.1016/j.semcdb.2011.09.001Search in Google Scholar PubMed

Ohnishi, K., Ota, I., Takahashi, A., Ohnishi, T. (2000). Glycerol restores p53-dependent radiosensitivity of human head and neck cancer cells bearing mutant p53. Br. J. Cancer 83, 1735–1739.10.1054/bjoc.2000.1511Search in Google Scholar PubMed PubMed Central

Paul, A.L., Denison, F.C., Schultz, E.R., Zupanska, A.K., Ferl, R.J. (2012). 14-3-3 phosphoprotein interaction networks – does isoform diversity present functional interaction specification? Front. Plant. Sci. 3, 1–14.10.3389/fpls.2012.00190Search in Google Scholar PubMed PubMed Central

Perathoner, A., Pirkebner, D., Brandacher, G., Spizzo, G., Stadlmann, S., Obrist, P., Margreiter, R., Amberger, A. (2005). 14-3-3 Sigma expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Clin. Cancer Res. 11, 3274–3279.10.1158/1078-0432.CCR-04-2207Search in Google Scholar

Qi, W., Liu, X., Qiao, D., Martinez, J.D. (2005). Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. Int. J. Cancer. 113, 359–363.10.1002/ijc.20492Search in Google Scholar

Rajagopalan, S., Jaulent, A.M., Wells, M., Veprintsev, D.B., Fersht, A.R. (2008). 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers. Nucleic Acids Res. 36, 5983–5991.10.1093/nar/gkn598Search in Google Scholar

Rajagopalan, S., Sade, R.S., Townsley, F.M., Fersht, A.R. (2009). Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res. 38, 893–906.10.1093/nar/gkp1041Search in Google Scholar

Rao, V.S., Srinivas, K., Sujini, G.N., Kumar, G.N. (2014). Protein-protein interaction detection: methods and analysis. Int. J.Proteomics. 2014, 147648.10.1155/2014/147648Search in Google Scholar

Rew, Y., Sun, D., Gonzalez-Lopez De Turiso, F., Bartberger, M.D., Beck, H.P., Canon, J., Chen, A., Chow, D., Deignan, J., Fox, B.M., et al. (2012). Structure-based design of novel inhibitors of the MDM2-p53 interaction. J. Med. Chem. 55, 4936–4954.10.1021/jm300354jSearch in Google Scholar

Schon, O., Friedler, A., Bycroft, M., Freund, S.M., Fersht, A.R. (2002). Molecular mechanism of the interaction between MDM2 and p53. J. Mol. Biol. 323, 491–501.10.1016/S0022-2836(02)00852-5Search in Google Scholar

Schumacher, B., Mondry, J., Thiel, P., Weyand, M., Ottmann, C. (2010). Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer. FEBS Lett. 584, 1443–1448.10.1016/j.febslet.2010.02.065Search in Google Scholar PubMed

Shangary, S., Qin, D., McEachern, D., Liu, M., Miller, R.S., Qiu, S., Nikolovska-Coleska, Z., Ding, K., Wang, G., Chen, J., et al. (2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl. Acad. Sci. USA. 105, 3933–3938.10.1073/pnas.0708917105Search in Google Scholar PubMed PubMed Central

Shangary, S., Wang, S. (2009). Small-molecule Inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu. Rev. Pharmacol. Toxicol. 49, 223–241.10.1146/annurev.pharmtox.48.113006.094723Search in Google Scholar PubMed PubMed Central

Shen, H., Maki, C.G. (2011). Pharmacologic activation of p53 by small-molecule MDM2 antagonists. Curr. Pharm. Des. 17, 560–568.10.2174/138161211795222603Search in Google Scholar

Shieh, S.Y., Ikeda, M., Taya, Y., Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334.10.1016/S0092-8674(00)80416-XSearch in Google Scholar

Soussi, T., Lozano, G. (2005). P53 mutation heterogeneity in cancer. Biochem. Biophys. Res. Commun. 331, 834–842.10.1016/j.bbrc.2005.03.190Search in Google Scholar PubMed

Sun, D., Li, Z., Rew, Y., Gribble, M., Bartberger, M.D., Beck, H.P., Canon, J., Chen, A., Chen, X., Chow, D., et al. (2014). Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2-p53 inhibitor in clinical development. J. Med. Chem. 57, 1454–1472.10.1021/jm401753eSearch in Google Scholar PubMed

Thiel, P., Kaiser, M., Ottmann, C. (2012). Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery? Angew. Chem. Int. Ed. 51, 2012–2018.10.1002/anie.201107616Search in Google Scholar PubMed

Tovar, C., Graves, B., Packman, K., Filipovic, Z., Higgins, B., Xia, M., Tardell, C., Garrido, R., Lee, E., Kolinsky, K., et al. (2013). MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 73, 2587–2597.10.1158/0008-5472.CAN-12-2807Search in Google Scholar PubMed

Toyooka, N., Yoshida, Y., Yotsui, Y., Momose, T. (1999). 2-Piperidone type of chiral building block for 3-piperidinol alkaloid synthesis. J. Org. Chem. 64, 4914–4919.10.1021/jo990397tSearch in Google Scholar PubMed

Unger, T., Juven-Gershon, T., Moallem, E., Berger, M., Vogt Sionov, R., Lozano, G., Oren, M., Haupt, Y. (1999). Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 18, 1805–1814.10.1093/emboj/18.7.1805Search in Google Scholar PubMed PubMed Central

van Heusden, G.P. (2005). 14-3-3 proteins: regulators of numerous eukaryotic proteins. IUBMB Life 57, 623–629.10.1080/15216540500252666Search in Google Scholar PubMed

Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848.10.1126/science.1092472Search in Google Scholar PubMed

Vu, B., Wovkulich, P., Pizzolato, G., Lovey, A., Ding, Q., Jiang, N., Liu, J.J., Zhao, C., Glenn, K., Wen, Y., et al. (2013). Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med. Chem. Lett. 4, 466–469.10.1021/ml4000657Search in Google Scholar

Wang, S., Sun, W., Zhao, Y., McEachern, D., Meaux, I., Barrière, C., Stuckey, J.A., Meagher, J.L., Bai, L., Liu, L., et al. (2014). SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res. 74, 5855–5865.10.1158/0008-5472.CAN-14-0799Search in Google Scholar

Wang, S., Zhao, Y., Aguilar, A., Bernard, D., Yang, C.Y. (2017). Targeting the MDM2–p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb Perspect. Med. 7, a026245.10.1101/cshperspect.a026245Search in Google Scholar

Waterman, M.J., Stavridi, E.S., Waterman, J.L., Halazonetis, T.D. (1998). ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat. Genet. 19, 175–178.10.1038/542Search in Google Scholar

Wendt, M.D. (2012). Protein-protein interactions as drug targets. In: Protein-Protein Interactions. Topics in Medicinal Chemistry, Vol. 8, M.D Wendt, ed. (Berlin, Heidelberg: Springer), pp. 1–55.10.1007/978-3-642-28965-1_1Search in Google Scholar

Wilker, E.W., Grant, R.A., Artim, S.C., Yaffe, M.B. (2005). A structural basis for 14-3-3σ functional specificity. J. Biol. Chem. 280, 18891–18898.10.1074/jbc.M500982200Search in Google Scholar

Yaffe, M.B. (2002). How do 14-3-3 proteins work ? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513, 53–57.10.1016/S0014-5793(01)03288-4Search in Google Scholar

Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, S.J., Smerdon, S.J., Cantley, L.C. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971.10.1016/S0092-8674(00)80487-0Search in Google Scholar

Yang, H.Y., Wen, Y.Y., Chen, C.H., Lozano, G., Lee, M.H. (2003). 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol. Cell Biol. 23, 7096–7107.10.1128/MCB.23.20.7096-7107.2003Search in Google Scholar PubMed PubMed Central

Yang, X., Lee, W.H., Sobott, F., Papagrigoriou, E., Robinson, C.V., Grossmann, J.G., Sundström, M., Doyle, D.A., Elkins, J.M. (2006). Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA. 103, 17237–17242.10.1073/pnas.0605779103Search in Google Scholar PubMed PubMed Central

Zarzycka, B., Kuenemann, M.A., Miteva, M.A., Nicolaes, G.A.F., Vriend, G., Sperandio, O. (2016). Stabilization of protein-protein interaction complexes through small molecules. Drug Discov. Today 21, 48–57.10.1016/j.drudis.2015.09.011Search in Google Scholar PubMed

Zhang, F., Liu, Z.J, Liu, J.T. (2010). Michael addition of N-sulfinyl metalloenamines to β-trifluoromethyl-α,β-unsaturated ester: an efficient access to chiral 4-trifluoromethyl-2-piperidones. Tetrahedron 66, 6864–6868.10.1016/j.tet.2010.06.047Search in Google Scholar

Zhao, Y., Liu, L., Sun, W., Lu, J., McEachern, D., Li, X., Yu, S., Bernard, D., Ochsenbein, P., Ferey, V., et al. (2013). Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J. Am. Chem. Soc. 135, 7223–7234.10.1021/ja3125417Search in Google Scholar PubMed PubMed Central

Received: 2019-10-30
Accepted: 2020-02-03
Published Online: 2020-03-07
Published in Print: 2020-07-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0405/html
Scroll to top button