Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 12, 2018

Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells

  • Amanda P.B. Albuquerque , Meritxell Balmaña , Stefan Mereiter , Filipe Pinto , Celso A. Reis EMAIL logo and Eduardo I.C. Beltrão EMAIL logo
From the journal Biological Chemistry

Abstract

Triple negative breast cancer (TNBC) is a major global public health problem. The lack of targeted therapy and the elevated mortality evidence the need for better knowledge of the tumor biology. Hypoxia and aberrant glycosylation are associated with advanced stages of malignancy, tumor progression and treatment resistance. Importantly, serum deprivation regulates the invasive phenotype and favors TNBC cell survival. However, in TNBC, the role of hypoxia and serum deprivation in the regulation of glycosylation remains largely unknown. The effects of hypoxia and serum deprivation on the expression of glycosyltransferases and glycan profile were evaluated in the MDA-MB-231 cell line. We showed that the overexpression of HIF-1α was accompanied by acquisition of epithelial-mesenchimal transition features. Significant upregulation of fucosyl- and sialyltransferases involved in the synthesis of tumor-associated carbohydrate antigens was observed together with changes in fucosylation and sialylation detected by Aleuria aurantia lectin and Sambucus nigra agglutinin lectin blots. Bioinformatic analysis further indicated a mechanism by which HIF-1α can regulate ST3GAL6 expression and the relationship within the intrinsic characteristics of TNBC tumors. In conclusion, our results showed the involvement of hypoxia and serum deprivation in glycosylation profile regulation of TNBC cells triggering breast cancer aggressive features and suggesting glycosylation as a potential diagnostic and therapeutic target.

Acknowledgments

We thank the following funding agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE). This work was also funded by the project NORTE-01-0145-FEDER-000029, supported by Norte Portugal Regional Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); and by FEDER – Fundo Europeu de Desenvolvimento Regional funds through COMPETE 2020 – Operational Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT (Fundação para a Ciência e a Tecnologia)/Ministério da Ciência, Tecnologia e Inovação in the framework of the project ‘Institute for Research and Inovation in Health Sciences’ (POCI-01-0145-FEDER-007274), the project POCI-01-0145-FEDER-016585 (PTDC/BBB EBI/0567/2014), and by EU 7th framework programme ITN 316929, and by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 748880. F. Pinto received a fellowship from FCT (SFRH/BPD/115730/2016).

References

Alley, W.R. Jr. and Novotony, M.V. (2010). Glycomic analysis of sialic acid linkages in glycans derived from blood serum glucoproteins. J. Proteome. Res. 9, 3062–3072.10.1021/pr901210rSearch in Google Scholar PubMed PubMed Central

Aloia, A., Petrova, E., Tomiuk, S., Bissels, U., Déas, O., Saini, M., Zickgraf, F.M., Wagner, S., Spaich, S., Sütterlin, M., et al. (2015). The sialyl-glycolipid stage embryonic antigen 4 marks a subpopulation of chemotherapy resistant breast cancer with mesenchymal features. Breast Cancer Res. 17, 146.10.1186/s13058-015-0652-6Search in Google Scholar PubMed PubMed Central

Ashkani, J. and Naidoo, K.J. (2016). Glycosyltransferase gene expression profiles classify cancer types and propose prognostic subtypes. Sci. Rep. 6, 26451.10.1038/srep26451Search in Google Scholar PubMed PubMed Central

Badr, H.A., AlSadek, D.M., Mathew, M.P., Li, C.Z., Djansugurova, L.B., Yarema, K.J., and Ahmed, H. (2015). Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials 70, 23–36.10.1016/j.biomaterials.2015.08.020Search in Google Scholar PubMed PubMed Central

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607.10.1038/nature11003Search in Google Scholar PubMed PubMed Central

Belo, I., Vliet, S., Maus, A., Laan, L.C., Nauta, T.D., Koolwijk, P., Tefsen, B., and van Die, I. (2015). Hypoxia inducible factor 1a down regulates cell surface expression of a1,2-fucosylated glycans in human pancreatic adenocarcinoma cells. FEBS Lett. 589, 2359–2366.10.1016/j.febslet.2015.07.035Search in Google Scholar PubMed

Britain, C.M., Dorsett, K.A., and Bellis, S.L. (2017). The glycosyltransferase ST6Gal-I protects tumor cells against serum growth factor withdrawal by enhancing survival signaling and proliferative potential. J. Biol. Chem. 11, 4663–4673.10.1074/jbc.M116.763862Search in Google Scholar PubMed PubMed Central

Carrascal, M.A., Silva, M., Ramalho, J.S., Pen, C., Martins, M., Pascoal, C., Amaral, C., Serrano, I., Oliveira, M.J., Sackstein, R., et al. (2017). Inhibition of fucosylation in human invasive ductal carcinoma reduces E-selectin ligand expression, cell proliferation and ERk1/2 and p38MAPK activation. Mol. Oncol. 12, 579–593.10.1002/1878-0261.12163Search in Google Scholar PubMed PubMed Central

Carvalho, P.C., Silva, A.S., Todeschini, A.R., and Dias, W.B. (2018). Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev. Din. 247, 481–491.10.1002/dvdy.24553Search in Google Scholar PubMed

Cazet, A., Julien, S., Bobowski, M., Burchell, J., and Delannoy, P. (2010). Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res. 12, 204.10.1186/bcr2577Search in Google Scholar PubMed PubMed Central

Chikarmane, S.A., Tirumani, S.H., Howard, S.A., Jagannathan, J.P., and DiPiro, P.J. (2015). Metastatic patterns of breast cancer subtypes: what radiologists should know in the era of personalized cancer medicine. Clin. Radiol. 1, 1–10.10.1016/j.crad.2014.08.015Search in Google Scholar PubMed

Choi, J., Kim, H., Jung, W., and Koo, J.S. (2013). Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype. Breast Cancer Res. 15, R78.10.1186/bcr3472Search in Google Scholar PubMed PubMed Central

Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352.10.1038/nature10983Search in Google Scholar PubMed PubMed Central

Duarte, H.O., Balmaña, M., Mereiter, S., Osório, H., Gomes, J., and Reis, C.A. (2017). Gastric cancer cell glycosylation as a modulator of the ErbB2 oncogenic receptor. Int. J. Mol. Sci. 18, 11.10.3390/ijms18112262Search in Google Scholar PubMed PubMed Central

Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 5, E359–E386.10.1002/ijc.29210Search in Google Scholar PubMed

Foulkes, W.D., Smith, I.E., and Reis-Filho, J.S. (2010). Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948.10.1056/NEJMra1001389Search in Google Scholar PubMed

Greville, G., McCann, A., Rudd, P., and Saldova, R. (2016). Epigenetic regulation of glycosylation and the impact on chemo-resistance in breast and ovarian cancer. Epigenetics 11, 845–857.10.1080/15592294.2016.1241932Search in Google Scholar PubMed PubMed Central

Han, D., Wu, G., Chang, C., Zhu, F., Xiao, Y., Li, Q., Zhang, T., and Zhang, L. (2015). Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway. Oncotarget 6, 40907–40919.10.18632/oncotarget.5723Search in Google Scholar PubMed PubMed Central

Henry, N.L. and Hayes, D.F. (2012). Cancer biomarkers. Mol. Oncol. 6, 140–146.10.1016/j.molonc.2012.01.010Search in Google Scholar PubMed PubMed Central

Higai, K., Ichikawa, A., and Matsumoto, K. (2006). Binding of sialyl LewisX antigen to lectin-like receptors on NK cells induces cytotoxicity and tyrosine phosphorylation of a 17-kDa protein. Biochim. Biophys. Acta 1760, 1355–1363.10.1016/j.bbagen.2006.03.015Search in Google Scholar PubMed

Howlader, N., Altekruse, S.F., Li, C.I., Chen, V.W., Clarke, C.A., Ries, L.A., and Cronin, K.A. (2014). US incidence of breast cancer subtypes defined by Joint hormone receptor and HER2 status. J. Natl. Cancer Inst. 106, 055.10.1093/jnci/dju055Search in Google Scholar PubMed PubMed Central

Jeon, M., Kim, H., Jung, H., and Koo, J.S. (2013). Expression of cell metabolism-related genes in different molecular subtypes of triple-negative breast cancer. Tumori. J. 99, 555–564.10.1177/030089161309900419Search in Google Scholar

Jones, R.B., Dorsett, K.A., Hjelmeland, A.B., and Bellis, S.L. (2018). The ST6Gal-I sialyltransferase protects tumor cells against hypoxia by enhancing HIF-1α signaling. J. Biol. Chem. 11, 4663–4673.10.1074/jbc.RA117.001194Search in Google Scholar PubMed PubMed Central

Julien, S., Krzewinski-Recchi, M.A., Harduin-Lepers, A., Gouyer, V., Huet, G., Le Bourhis, X., and Delannoy, P. (2001). Expression of sialyl-Tn antigen in breast cancer cells transfected with the human CMP-Neu5Ac: GalNAc α2,6-sialyltransferase (ST6GalNac I) cDNA. Glycoconj. J. 18, 883–893.10.1023/A:1022200525695Search in Google Scholar

Julien, S., Ivetic, A., Grigoriadis, A., QiZe, D., Burford, B., Sproviero, D., Picco, G., Gillett, C., Papp, S.L., Schaffer, L., et al. (2011). Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res. 24, 7683–7693.10.1158/0008-5472.CAN-11-1139Search in Google Scholar PubMed PubMed Central

Julien, S., Videira, P.A., and Delannoy, P. (2012). Sialyl-tn in cancer: (how) did we miss the target? Biomolecules 4, 435–466.10.3390/biom2040435Search in Google Scholar PubMed PubMed Central

Jung, Y., Fattet, L., and Yang, J. (2015a). Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin. Cancer Res. 21, 962–968.10.1158/1078-0432.CCR-13-3173Search in Google Scholar PubMed PubMed Central

Jung, S., Li, C., Duan, J., Lee, S., Kim, K., Park, Y., Yang, Y., Kim, K.I., Lim, J.S., Cheon, C.I., et al. (2015b). TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition. Oncotarget 30, 29060–29075.10.18632/oncotarget.5072Search in Google Scholar PubMed PubMed Central

Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J.A., van der Lee, R., Bessy, A., Chèneby, J., Kulkarni, S.R., Tan, G., et al. (2018). JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266.10.1093/nar/gkx1126Search in Google Scholar PubMed PubMed Central

Kim, S., Kim, H., Jung, H., and Koo, J.S. (2013). Metabolic phenotypes in triple-negative breast cancer. Tumour Biol. 34, 1699–1712.10.1007/s13277-013-0707-1Search in Google Scholar PubMed

Koike, T., Kimura, N., Miyazaki, K., Yabuta, T., Kumamoto, K., Takenoshita, S., Chen, J., Kobayashi, M., Hosokawa, M., Taniguchi, A., et al. (2004). Hypoxia induces adhesion molecules on cancer cells: a missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. USA 21, 8132–8137.10.1073/pnas.0402088101Search in Google Scholar PubMed PubMed Central

Kondaveeti, Y., Guttilla Reed, I.K., and White, B.A. (2015). Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines. Cancer Lett. 364, 44–58.10.1016/j.canlet.2015.04.025Search in Google Scholar PubMed

Kuo, C.Y., Cheng, C.T., Hou, P., Lin, Y.P., Ma, H., Chung, Y., Chi, K., Chen, Y., Li, W., Kung, H.J., et al. (2016). HIF-1-α links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity. Oncotarget 7, 34052–34069.10.18632/oncotarget.8570Search in Google Scholar PubMed PubMed Central

Kyselova, Z., Mechref, Y., Kang, P., Goetz, J.A., Dobrolecki, L.E., Sledge, G.W., Schnaper, L., Hickey, R.J., Malkas, L.H., and Novotny, M.V. (2008). Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin. Chem. 7, 1166–1175.10.1373/clinchem.2007.087148Search in Google Scholar PubMed

Li, L. and Li, W. (2015). Epithelial mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol. Ther. 150, 33–46.10.1016/j.pharmthera.2015.01.004Search in Google Scholar PubMed

Lucena, M.C., Carvalho, C.P., Donadio, J.L., Oliveira, I.A., de Queiroz, R.M., Marinho-Carvalho, M.M., Sola-Penna, M., de Paula, I.F., Gondim, K.C., McComb, M.E., et al. (2016). Epithelial mesenchymal transition induces aberrant glycosylation through hexosamine biosynthetic pathway activation. J. Biol. Chem. 291, 12917–12929.10.1074/jbc.M116.729236Search in Google Scholar PubMed PubMed Central

Lundgren, K., Holm, C., and Landberg, G. (2007). Hypoxia and breast cancer: prognostic and therapeutic implications. Cell. Mol. Life Sci. 64, 3233–3247.10.1007/s00018-007-7390-6Search in Google Scholar PubMed

Mahmoodi, N., Motamed, N., Paylakhi, S.H., and O Mahmoodi, N. (2015). Comparing the effect of silybin and silybin Advanced™ on viability and HER2 expression on the human breast cancer SKBR3 cell line by no serum starvation. Iran J. Pharm. Res. 2, 521–530.Search in Google Scholar

Marchiq, I. and Pouysségur, J. (2016). Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H+ symporters. J. Mol. Med. 94, 155–171.10.1007/s00109-015-1307-xSearch in Google Scholar PubMed PubMed Central

Mejías-Luque, R., López-Ferrer, A., Garrido, M., Fabra, A., and de Bólos, C. (2007). Changes in the invasive and metastatic capacities of HT-29/M3 cells induced by the expression of fucosyltransferase 1. Cancer Sci. 7, 1000–1005.10.1111/j.1349-7006.2007.00484.xSearch in Google Scholar PubMed

Milde-Langosch, K., Karn, T., Schmidt, M., zu Eulenburg, C., Oliveira-Ferrer, L., Wirtz, R.M., Schumacher, U., Witzel, I., Schütze, D., and Müller, V. (2014). Prognostic relevance of glycosylation-associated genes in breast cancer. Breast Cancer Res. Treat. 145, 295–305.10.1007/s10549-014-2949-zSearch in Google Scholar PubMed

Monzavi-Karbassi, B., Pashov, A., and Kieber-Emmons, T. (2013). Tumor-associated glycans and immune surveillance. Vaccines (Basel) 1, 174–203.10.3390/vaccines1020174Search in Google Scholar

Natoni, A. and O’Dwyer, M.E. (2016). Targeting selectins and their ligands in cancer. Front Oncol. 18, 93.10.3389/fonc.2016.00093Search in Google Scholar

Nutt, J.E. and Lunec, J. (1996). Induction of metalloproteinase (MMP1) expression by epidermal growth factor (EGF) receptor stimulation and serum deprivation in human breast tumour cells. Eur. J. Cancer. 12, 2127–2135.10.1016/S0959-8049(96)00261-4Search in Google Scholar

Peixoto, A., Fernandes, E., Gaiteiro, C., Lima, L., Azevedo, R., Soares, J., Cotton, S., Parreira, B., Neves, M., Amaro, T., et al. (2016). Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension. Oncotarget 7, 63138–63157.10.18632/oncotarget.11257Search in Google Scholar

Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000). Molecular portraits of human breast tumours. Nature. 406, 747–752.10.1038/35021093Search in Google Scholar

Pinho, S.S. and Reis, C.A. (2015). Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555.10.1038/nrc3982Search in Google Scholar

Potapenko, I.O., Lüders, T., Russnes. H.G., Helland, Å., Sorlie, T., Kristensen, V.N., Nord, S., Lingjærde, O.C., Borresen-Dale, A.L., and Haakensen, V.D. (2015). Glycan-related gene expression signatures in breast cancer subtypes; relation to survival. Mol. Oncol. 4, 861–876.10.1016/j.molonc.2014.12.013Search in Google Scholar

Reis, C.A., Osorio, H., Silva, L., Gomes, C., and David, L. (2010). Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 63, 322–329.10.1136/jcp.2009.071035Search in Google Scholar

Reshkin, S.J., Bellizzi, A., Albarani, V., Guerra, L., Tommasino, M., Paradiso, A., and Casavola, V. (2000). Phosphoinositide 3-kinase is involved in the tumor-specific activation of human breast cancer cell Na+/H+ exchange, motility, and invasion induced by serum deprivation. J. Biol. Chem. 8, 5361–5369.10.1074/jbc.275.8.5361Search in Google Scholar

Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., and Chinnaiyan, A.M. (2004). A cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6.10.1016/S1476-5586(04)80047-2Search in Google Scholar

Schultz, M.J., Swindall, A.F., and Bellis, S.L. (2012). Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev. 3–4, 501–518.10.1007/s10555-012-9359-7Search in Google Scholar PubMed PubMed Central

Semenza, G.L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408.10.1016/j.cell.2012.01.021Search in Google Scholar PubMed PubMed Central

Sewell, R., Bäckström, M., Dalziel, M., Gschmeissner, S., Karlsson, H., Noll, T., Gätgens, J., Clausen, H., Hansson, G.C., Burchell, J., et al. (2006). The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem. 281, 3586–3594.10.1074/jbc.M511826200Search in Google Scholar PubMed

Shirure, S., Liu, T., Delgadillo, F., Cuckler, C.M., Tees, D.F., Benencia, F., Goetz, D.J., and Burdick, M.M. (2015). CD44 variant isoforms expressed by breast cancer cells are functional E – selectin ligands under flow conditions. Am. J. Physiol. Cell Physiol. 308, C68–C78.10.1152/ajpcell.00094.2014Search in Google Scholar PubMed PubMed Central

Tan, Z., Wang, C., Li, X., and Guan, F. (2018). Bisecting N-acetylglucosamine structures inhibit hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Front. Physiol. 9, 210.10.3389/fphys.2018.00210Search in Google Scholar PubMed PubMed Central

Vaupel, P. and Hockel, M. (2000). Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Int. J. Oncol. 17, 869–879.10.3892/ijo.17.5.869Search in Google Scholar PubMed

Wang, W., He, Y.F., Sun, Q.K., Wang, Y., Han, X.H., Peng, D.F., Yao, Y.W., Ji, C.S., and Hu, B. (2014a). Hypoxia-inducible factor 1α in breast cancer prognosis. Clin. Chim. Acta 428, 32–37.10.1016/j.cca.2013.10.018Search in Google Scholar PubMed

Wang, F., Chang, M., Shi, Y., Jiang, L., Zhao, J., Hai, L., Sharen, G., and Du, H. (2014b). Down-regulation of hypoxia-inducible factor-1 suppresses malignant biological behavior of triple-negative breast cancer cells. Int. J. Clin. Exp. Med. 11, 3933–3940.Search in Google Scholar

Wu, C.Y., Guo, X.Z., and Li, H.Y. (2015). Hypoxia and serum deprivation protected MiaPaCa-2 cells from KAI1-induced proliferation inhibition through autophagy pathway activation in solid tumors. Clin. Transl. Oncol. 3, 201–208.10.1007/s12094-014-1211-9Search in Google Scholar PubMed

Yakisich, J.S., Venkatadri, R., Azad, N., and Yver, A.K.V. (2017). Chemoresistance of lung and breast cancer cells growing under prolonged periods of serum starvation. J. Cell Physiol. 8, 2033–2043.10.1002/jcp.25514Search in Google Scholar PubMed

Ye, Q., Kantonen, S., and Gomez-Cambronero, J. (2013). Serum deprivation confers the MDA-MB-231 breast cancer line with an EGFR/JAK3/PLD2 system that maximizes cancer cell invasion. Mol. Biol. 4, 755–766.10.1016/j.jmb.2012.11.035Search in Google Scholar PubMed PubMed Central

Yevshin, I.S., Sharipov, R.N., Valeev, T.F., Kel, A., and Kolpkov, F. (2017). GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res. 45, D61–D67.10.1093/nar/gkw951Search in Google Scholar PubMed PubMed Central

Zhuo, Y. and Bellis, S.L. (2011). Emerging role of α2,6-sialic acid as a negative regulator of galectin binding and function. J. Biol. Chem. 8, 5935–5941.10.1074/jbc.R110.191429Search in Google Scholar PubMed PubMed Central

Zi, C., Wu, Z., Wang, J., Huo, Y., Zhu, G., Wu, S., and Bao, W. (2013). Transcriptional activity of the FUT1 gene promoter region in pigs. Int. J. Mol. Sci. 14, 24126–24134.10.3390/ijms141224126Search in Google Scholar PubMed PubMed Central


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0121).


Received: 2018-01-15
Accepted: 2018-04-27
Published Online: 2018-06-12
Published in Print: 2018-06-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2018-0121/html
Scroll to top button