Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 8, 2021

Clustered regularly interspaced short palindromic repeats, a glimpse – impacts in molecular biology, trends and highlights

  • Dhivya Selvaraj , Rajni Dawar , Pradeep Kumar Sivakumar EMAIL logo and Anita Devi

Abstract

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a novel molecular tool. In recent days, it has been highlighted a lot, as the Nobel prize was awarded for this sector in 2020, and also for its recent use in Covid-19 related diagnostics. Otherwise, it is an eminent gene-editing technique applied in diverse medical zones of therapeutics in genetic diseases, hematological diseases, infectious diseases, etc., research related to molecular biology, cancer, hereditary diseases, immune and inflammatory diseases, etc., diagnostics related to infectious diseases like viral hemorrhagic fevers, Covid-19, etc. In this review, its discovery, working mechanisms, challenges while handling the technique, recent advancements, applications, alternatives have been discussed. It is a cheaper, faster technique revolutionizing the medicinal field right now. However, their off-target effects and difficulties in delivery into the desired cells make CRISPR, not easily utilizable. We conclude that further robust research in this field may promise many interesting, useful results.

Highlights

  1. CRISPR has revolutionized genetics.

  2. CRISPR was nameless till its discovery in bacteria, and now it is in the spotlight because of its award for Nobel prize 2020 as well as its role in Covid-19 related diagnostics.

  3. It has reached every door of therapeutics, research, and diagnostics related to mankind and also plant biology.

  4. It is essential to consider off-target effects and adverse immune reactions linked with CRISPR.

  5. Fine-tuning of the methodology and new additions like CRISPR GUARD, multiplexing, etc., have made CRISPR more precise and straightforward.

  6. Anyway, there is a demand for further technical modernization to reinvigorate the methodology more advanced.


Corresponding author: Pradeep Kumar Sivakumar, LTHPS Unit, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi-110076, India, E-mail:

  1. Research funding: None declared.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Informed consent: Not applicable.

  5. Ethical approval: Not applicable.

References

1. The Nobel Prize in Chemistry 2020 [press release] (2020 Oct 7). Available from: www.kva.se and www.nobelprize.org.Search in Google Scholar

2. Gaj, T, Gersbach, CA, Barbas, CF3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013;31:397–405. https://doi.org/10.1016/j.tibtech.2013.04.004.Search in Google Scholar PubMed PubMed Central

3. Sander, JD, Joung, JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014;32:347–55. https://doi.org/10.1038/nbt.2842.Search in Google Scholar PubMed PubMed Central

4. Cox, D, Platt, R, Zhang, F. Therapeutic genome editing: prospects and challenges. Nat Med 2015;21:121–31. https://doi.org/10.1038/nm.3793.Search in Google Scholar PubMed PubMed Central

5. Komor, AC, Badran, AH, Liu, DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017;168:20–36. https://doi.org/10.1016/j.cell.2016.10.044.Search in Google Scholar PubMed PubMed Central

6. Ishino, Y, Shinagawa, H, Makino, K, Amemura, M, Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987;169:5429–33. https://doi.org/10.1128/jb.169.12.5429-5433.1987.Search in Google Scholar PubMed PubMed Central

7. Bolotin, A, Quinquis, B, Sorokin, A, Ehrlich, SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005;151:2551–61. https://doi.org/10.1099/mic.0.28048-0.Search in Google Scholar PubMed

8. Mojica, FJM. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005;60:174–82. https://doi.org/10.1007/s00239-004-0046-3.Search in Google Scholar PubMed

9. Pourcel, C, Salvignol, G, Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 2005;151:653–63. https://doi.org/10.1099/mic.0.27437-0.Search in Google Scholar PubMed

10. Mojica, FJ, Ferrer, C, Juez, G, Rodriguez-Valera, F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 1995;17:85–93. https://doi.org/10.1111/j.1365-2958.1995.mmi_17010085.x.Search in Google Scholar PubMed

11. Mojica, FJ, Diez-Villasenor, C, Soria, E, Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 2000;36:244–6. https://doi.org/10.1046/j.1365-2958.2000.01838.x.Search in Google Scholar PubMed

12. Groenen, PMA, Bunschoten, AE, Van Soolingen, D, Van Embden, JD. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 1993;10:1057–65. https://doi.org/10.1111/j.1365-2958.1993.tb00976.x.Search in Google Scholar PubMed

13. Kamerbeek, J, Schouls, L, Kolk, A, Van Agterveld, M, Van Soolingen, D, Kuijper, S, et al.. Simultaneous detection and strain differentiation of mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 1997;35:907–14. https://doi.org/10.1128/jcm.35.4.907-914.1997.Search in Google Scholar PubMed PubMed Central

14. Jansen, R, Embden, JD, Gaastra, W, Schouls, LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002;43:1565–75. https://doi.org/10.1046/j.1365-2958.2002.02839.x.Search in Google Scholar PubMed

15. Gasiunas, G, Barrangou, R, Horvath, P, Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012;109:2579–86. https://doi.org/10.1073/pnas.1208507109.Search in Google Scholar PubMed PubMed Central

16. Jinek, M, Chylinski, K, Fonfara, I, Hauer, M, Doudna, JA, Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816–22. https://doi.org/10.1126/science.1225829.Search in Google Scholar PubMed PubMed Central

17. Mali, P, Yang, L, Esvelt, KM, Aach, J, Guell, M, DiCarlo, JE, et al.. RNA-guided human genome engineering via Cas9. Science 2013;339:823–6. https://doi.org/10.1126/science.1232033.Search in Google Scholar PubMed PubMed Central

18. Cong, L, Ran, FA, Cox, D, Lin, S, Barretto, R, Habib, N, et al.. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819–23. https://doi.org/10.1126/science.1231143.Search in Google Scholar PubMed PubMed Central

19. Cornu, TI, Mussolino, C, Cathomen, T. Refining strategies to translate genome editing to the clinic. Nat Med 2017;23:415–23. https://doi.org/10.1038/nm.4313.Search in Google Scholar PubMed

20. Cyranoski, D. CRISPR gene-editing tested in a person for the first time. Nature 2016;539:479. https://doi.org/10.1038/nature.2016.20988.Search in Google Scholar PubMed

21. Cyranoski, D. Chinese scientists to pioneer first human CRISPR trial. Nature 2016;535:476–7. https://doi.org/10.1038/nature.2016.20302.Search in Google Scholar PubMed

22. Hockemeyer, D, Jaenisch, R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 2016;18:573–86. https://doi.org/10.1016/j.stem.2016.04.013.Search in Google Scholar PubMed PubMed Central

23. Chen, JS, Doudna, JA. The chemistry of Cas9 and its CRISPR colleagues. Nat Rev Chem 2017;1:0078. https://doi.org/10.1038/s41570-017-0078.Search in Google Scholar

24. Mojica, FJM, Díez-Villaseñor, C, García-Martínez, J, Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (Read) 2009;155(3 Pt):733–40. https://doi.org/10.1099/mic.0.023960-0.Search in Google Scholar PubMed

25. Shah, SA, Erdmann, S, Mojica, FJ, Garrett, RA. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 2013;10:891–9. https://doi.org/10.4161/rna.23764.Search in Google Scholar PubMed PubMed Central

26. Sternberg, SH, Redding, S, Jinek, M, Greene, EC, Doudna, JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014;507:62–7. https://doi.org/10.1038/nature13011.Search in Google Scholar PubMed PubMed Central

27. Bogdanove, AJ, Bohm, A, Miller, JC, Morgan, RD, Stoddard, BL. Engineering altered protein–DNA recognition specificity. Nucleic Acids Res 2018;46:4845–71. https://doi.org/10.1093/nar/gky289.Search in Google Scholar PubMed PubMed Central

28. Shub, DA, Goodrich-Blair, H, Eddy, SR. Amino-acid-sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem Sci 1994;19:402–4. https://doi.org/10.1016/0968-0004(94)90086-8.Search in Google Scholar PubMed

29. Al-Attar, S, Westra, ER, van der Oost, J, Brouns, SJ. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem 2011;392:277–89. https://doi.org/10.1515/BC.2011.042.Search in Google Scholar PubMed

30. Wright, AV, Nuñez, JK, Doudna, JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 2016;164:29–44. https://doi.org/10.1016/j.cell.2015.12.035.Search in Google Scholar PubMed

31. Canver, MC, Bauer, DE, Orkin, SH. Functional interrogation of non-coding DNA through CRISPR genome editing. Methods 2017;121–122:118–29. https://doi.org/10.1016/j.ymeth.2017.03.008.Search in Google Scholar PubMed PubMed Central

32. Krause, KW. Editing the human germline: groundbreaking science and mind-numbing sentiment. Skeptical Inq 2017;41:29–31.Search in Google Scholar

33. Cradick, TJ, Fine, EJ, Antico, CJ, Bao, G. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 2013;41:9584–92. https://doi.org/10.1093/nar/gkt714.Search in Google Scholar PubMed PubMed Central

34. Dever, DP, Bak, RO, Reinisch, A, Camarena, J, Washington, G, Nicolas, CE, et al.. CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. 2016;539:384–9. https://doi.org/10.1038/nature20134.Search in Google Scholar PubMed PubMed Central

35. Fu, Y, Foden, JA, Khayter, C, Maeder, ML, Reyon, D, Joung, JK, et al.. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013;31:822–6. https://doi.org/10.1038/nbt.2623.Search in Google Scholar PubMed PubMed Central

36. Hsu, P, Scott, D, Weinstein, J, Ran, F, Konermann, S, Agarwala, V, et al.. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013;31:827–32. https://doi.org/10.1038/nbt.2647.Search in Google Scholar PubMed PubMed Central

37. Wang, X, Wang, Y, Wu, X, Wang, J, Wang, Y, Qiu, Z, et al.. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 2015;33:175–8. https://doi.org/10.1038/nbt.3127.Search in Google Scholar PubMed

38. Lin, Y, Cradick, T, Brown, M, Deshmukh, H, Ranjan, P, Sarode, N, et al.. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 2014;42:7473–85. https://doi.org/10.1093/nar/gku402.Search in Google Scholar PubMed PubMed Central

39. Cho, S, Kim, S, Kim, Y, Kweon, J, Kim, H, Bae, S, et al.. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 2013;24:132–41. https://doi.org/10.1101/gr.162339.113.Search in Google Scholar PubMed PubMed Central

40. Tsai, SQ, Nguyen, NT, Malagon-Lopez, J, Topkar, VV, Aryee, MJ, Joung, JK. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods 2017;14:607–14. https://doi.org/10.1038/nmeth.4278.Search in Google Scholar PubMed PubMed Central

41. Kim, D, Bae, S, Park, J, Kim, E, Kim, S, Yu, HR, et al.. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 2015;12:237–43. https://doi.org/10.1038/nmeth.3284.Search in Google Scholar PubMed

42. Wienert, B, Wyman, SK, Richardson, CD, Yeh, CD, Akcakaya, P, Porritt, MJ, et al.. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 2019;364:286–9. https://doi.org/10.1126/science.aav9023.Search in Google Scholar PubMed PubMed Central

43. Akcakaya, P, Bobbin, ML, Guo, JA, Malagon-Lopez, J, Clement, K, Garcia, SP, et al.. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 2018;561:416–9. https://doi.org/10.1038/s41586-018-0500-9.Search in Google Scholar PubMed PubMed Central

44. Tsai, SQ, Zheng, Z, Nguyen, NT, Liebers, M, Topkar, VV, Thapar, V, et al.. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 2015;33:187–97. https://doi.org/10.1038/nbt.3117.Search in Google Scholar PubMed PubMed Central

45. Komor, AC, Kim, YB, Packer, MS, Zuris, JA, Liu, DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016;533:420–4. https://doi.org/10.1038/nature17946.Search in Google Scholar PubMed PubMed Central

46. Nishida, K, Arazoe, T, Yachie, N, Banno, S, Kakimoto, M, Tabata, M, et al.. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 2016;353:aaf8729. https://doi.org/10.1126/science.aaf8729.Search in Google Scholar PubMed

47. Tachibana, C. Technology feature|beyond CRISPR: what’s current and upcoming in genome editing. Science 2019;365:1484.2. https://doi.org/10.1126/science.365.6460.1484-b.Search in Google Scholar

48. Charlesworth, C, Deshpande, P, Dever, D, Camarena, J, Lemgart, V, Cromer, M, et al.. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019;25:249–54. https://doi.org/10.1038/s41591-018-0326-x.Search in Google Scholar PubMed PubMed Central

49. Maruyama, T, Dougan, SK, Truttmann, MC, Bilate, AM, Ingram, JR, Ploegh, HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015;33:538–42. https://doi.org/10.1038/nbt.3190.Search in Google Scholar PubMed PubMed Central

50. Pickar-Oliver, A, Gersbach, CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol 2019;20:490–507. https://doi.org/10.1038/s41580-019-0131-5.Search in Google Scholar PubMed PubMed Central

51. Abudayyeh, OO, Gootenberg, JS, Essletzbichler, P, Han, S, Joung, J, Belanto, JJ, et al.. RNA targeting with CRISPR-Cas13. Nature 2017;550:280–4. https://doi.org/10.1038/nature24049.Search in Google Scholar PubMed PubMed Central

52. Coelho, MA, Braekeleer, ED, Firth, M, Bista, M, Lukasiak, S, Cuomo, ME, et al.. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs. Nat Commun 2020;11:4132. https://doi.org/10.1038/s41467-020-17952-5.Search in Google Scholar PubMed PubMed Central

53. Jakočiūnas, T, Bonde, I, Herrgård, M, Harrison, SJ, Kristensen, M, Pedersen, LE, et al.. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 2015;28:213–22. https://doi.org/10.1016/j.ymben.2015.01.008.Search in Google Scholar PubMed

54. Cheng, AW, Wang, H, Yang, H, Shi, L, Katz, Y, Theunissen, TW, et al.. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 2013;23:1163–71. https://doi.org/10.1038/cr.2013.122.Search in Google Scholar PubMed PubMed Central

55. Tak, YE, Kleinstiver, BP, Nuñez, JK, Hsu, JY, Horng, JE, Gong, J, et al.. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat Methods 2017;14:1163–6. https://doi.org/10.1038/nmeth.4483.Search in Google Scholar PubMed PubMed Central

56. Ren, J, Liu, X, Fang, C, Jiang, S, June, CJ, Zhao, Y, et al.. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 2017;23:2255–66. https://doi.org/10.1158/1078-0432.ccr-16-1300.Search in Google Scholar PubMed PubMed Central

57. Poirot, L, Philip, B, Mannioui, CS, Clerre, DL, Sotinel, IC, Derniame, S, et al.. Multiplex genome-edited T-cell manufacturing platform for “Off-the-Shelf” adoptive T-cell immunotherapies. Cancer Res 2015;75:3853–64. https://doi.org/10.1158/0008-5472.can-14-3321.Search in Google Scholar PubMed

58. Lim, D, Sreekanth, V, Cox, KJ, Law, BK, Wagner, BK, Karp, JM, et al.. Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Nat Commun 2020;11:4043. https://doi.org/10.1038/s41467-020-17725-0.Search in Google Scholar PubMed PubMed Central

59. Gamble, A, Pepper, AR, Bruni, A, Shapiro, AMJ. The journey of islet cell transplantation and future development. Islets 2018;10:80–94. https://doi.org/10.1080/19382014.2018.1428511.Search in Google Scholar PubMed PubMed Central

60. Sneddon, JB, Tang, Q, Stock, P, Bluestone, JA, Roy, S, Desai, T, et al.. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 2018;22:810–23. https://doi.org/10.1016/j.stem.2018.05.016.Search in Google Scholar PubMed PubMed Central

61. Russell, MA, Morgan, NG. The impact of anti-inflammatory cytokines on the pancreatic β-cell. Islets 2014;6:e950547. https://doi.org/10.4161/19382014.2014.950547.Search in Google Scholar PubMed PubMed Central

62. Souza, KLA, Gurgul-Convey, E, Elsner, M, Lenzen, S. Interaction between pro-inflammatory and anti-inflammatory cytokines in insulin producing cells. J Endocrinol 2008;197:139–50. https://doi.org/10.1677/joe-07-0638.Search in Google Scholar PubMed

63. Carter, JD, Ellett, JD, Chen, M, Smith, KM, Fialkow, LB, McDuffie, MJ, et al.. Viral IL-10-mediated immune regulation in pancreatic islet transplantation. Mol Ther 2005;12:360–8. https://doi.org/10.1016/j.ymthe.2005.02.030.Search in Google Scholar PubMed

64. Yokouchi, Y, Suzuki, S, Ohtsuki, N, Yamamoto, K, Noguchi, S, Soejima, Y, et al.. Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing. Sci Rep 2020;10:13927. https://doi.org/10.1038/s41598-020-70401-7.Search in Google Scholar PubMed PubMed Central

65. Knight, SC, Tjian, R, Doudna, JA. Genomes in focus: development and applications of CRISPR-Cas9 imaging technologies. Angew Chem Int Ed Engl 2018;57:4329–37. https://doi.org/10.1002/anie.201709201.Search in Google Scholar PubMed PubMed Central

66. Wu, X, Mao, S, Ying, Y, Krueger, CJ, Chen, AK. Progress and challenges for live-cell imaging of genomic loci using CRISPR based platforms. Genom Proteom Bioinform 2019;17:119–28. https://doi.org/10.1016/j.gpb.2018.10.001.Search in Google Scholar PubMed PubMed Central

67. Ma, H, Tu, LC, Naseri, A, Huisman, M, Zhang, S, Grunwald, D, et al.. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol 2016;214:529–37. https://doi.org/10.1083/jcb.201604115.Search in Google Scholar PubMed PubMed Central

68. Wang, H, Nakamura, M, Abbott, TR, Zhao, D, Luo, K, Yu, C, et al.. CRISPR-mediated live imaging of genome editing and transcription. Science 2019;365:1301–5. https://doi.org/10.1126/science.aax7852.Search in Google Scholar PubMed

69. Hou, T, Zeng, W, Yang, M, Chen, W, Ren, L, Ai, J, et al.. Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19. PLoS Pathog 2020;16:e1008705. https://doi.org/10.1371/journal.ppat.1008705.Search in Google Scholar PubMed PubMed Central

70. Broughton, JP, Deng, X, Yu, G, Fasching, CL, Servellita, V, Singh, J, et al.. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol 2020;38:870–4. https://doi.org/10.1038/s41587-020-0513-4.Search in Google Scholar PubMed PubMed Central

71. Sanjana, NE, Wright, J, Zheng, K, Shalem, O, Fontanillas, P, Joung, J, et al.. High-resolution interrogation of functional elements in the noncoding genome. Science 2016;353:1545–9. https://doi.org/10.1126/science.aaf7613.Search in Google Scholar PubMed PubMed Central

72. Zhan, T, Rindtorff, N, Betge, J, Ebert, MP, Boutros, M. CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol 2019;55:106–19. https://doi.org/10.1016/j.semcancer.2018.04.001.Search in Google Scholar PubMed

73. Kawamura, N, Nimura, K, Nagano, H, Yamaguchi, S, Nonomura, N, Kaneda, Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget 2015;6:22361–74. https://doi.org/10.18632/oncotarget.4293.Search in Google Scholar PubMed PubMed Central

74. Zuckermann, M, Hovestadt, V, Knobbe-Thomsen, CB, Zapatka, M, Northcott, PA, Schramm, K, et al.. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun 2015;6:7391. https://doi.org/10.1038/ncomms8391.Search in Google Scholar PubMed PubMed Central

75. Garcia-Tunon, I, Hernandez-Sanchez, M, Ordoñez, JL, Alonso-Perez, V, Alamo-Quijada, M, Benito, R, et al.. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia. Oncotarget 2017;8:26027–40. https://doi.org/10.18632/oncotarget.15215.Search in Google Scholar PubMed PubMed Central

76. Maddalo, D, Manchado, E, Concepcion, CP, Bonetti, C, Vidigal, JA, Han, YC, et al.. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014;516:423–7. https://doi.org/10.1038/nature13902.Search in Google Scholar PubMed PubMed Central

77. Driehuis, E, Clevers, H. CRISPR/Cas 9 genome editing and its applications in organoids. Am J Physiol Gastrointest Liver Physiol 2017;312:G257–65. https://doi.org/10.1152/ajpgi.00410.2016.Search in Google Scholar PubMed

78. Clevers, H. Modeling development and disease with organoids. Cell 2016;165:1586–97. https://doi.org/10.1016/j.cell.2016.05.082.Search in Google Scholar PubMed

79. Schwank, G, Koo, BK, Sasselli, V, Dekkers, JF, Heo, I, Demircan, T, et al.. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013;13:653–8. https://doi.org/10.1016/j.stem.2013.11.002.Search in Google Scholar PubMed

80. Drost, J, van Jaarsveld, RH, Ponsioen, B, Zimberlin, C, van Boxtel, R, Buijs, A, et al.. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015;521:43–7. https://doi.org/10.1038/nature14415.Search in Google Scholar PubMed

81. Matano, M, Date, S, Shimokawa, M, Takano, A, Fujii, M, Ohta, Y, et al.. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 2015;21:256–62. https://doi.org/10.1038/nm.3802.Search in Google Scholar PubMed

82. Barnes, KG, Lachenauer, AE, Nitido, A, Siddiqui, S, Gross, R, Beitzel, B, et al.. Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nat Commun 2020;11:4131. https://doi.org/10.1038/s41467-020-17994-9.Search in Google Scholar PubMed PubMed Central

83. Wang, W, Ye, C, Liu, J, Zhang, D, Kimata, JT, Zhou, P. CC R5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 2014;9:e115987. https://doi.org/10.1371/journal.pone.0115987.Search in Google Scholar PubMed PubMed Central

84. Kennedy, EM, Kornepati, AVR, Goldstein, M, Bogerd, HP, Poling, BC, Whisnant, AW, et al.. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 2014;88:11965–72. https://doi.org/10.1128/jvi.01879-14.Search in Google Scholar

85. Xu, Y, Qi, Y, Luo, J, Yang, J, Xie, Q, Deng, C, et al.. Hepatitis B virus X protein stimulates proliferation, wound closure and inhibits apoptosis of HuH-7 cells via CDC 42. Int J Mol Sci 2017;18:E586. https://doi.org/10.3390/ijms18030586.Search in Google Scholar PubMed PubMed Central

86. Ren, Q, Li, C, Yuan, P, Cai, C, Zhang, L, Luo, GG, et al.. A dual-reporter system for real-time monitoring and high-throughput CRISPR/Cas9 library screening of the hepatitis C virus. Sci Rep 2015;5:8865. https://doi.org/10.1038/srep08865.Search in Google Scholar PubMed PubMed Central

87. O’Connell, MR, Oakes, BL, Sternberg, SH, East-Seletsky, A, Kaplan, M, Doudna, JA. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014;516:263–6. https://doi.org/10.1038/nature13769.Search in Google Scholar PubMed PubMed Central

88. Konermann, S, Lotfy, P, Brideau, NJ, Oki, J, Shokhirev, MN, Hsu, PD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 2018;173:665–76.e14. https://doi.org/10.1016/j.cell.2018.02.033.Search in Google Scholar PubMed PubMed Central

89. Nelles, DA, Fang, MY, O’Connell, MR, Xu, JL, Markmiller, SJ, Doudna, JA, et al.. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 2016;165:488–96. https://doi.org/10.1016/j.cell.2016.02.054.Search in Google Scholar PubMed PubMed Central

90. Cox, DBT, Gootenberg, JS, Abudayyeh, OO, Franklin, B, Kellner, MJ, Joung, J, et al.. RNA editing with CRISPR-Cas13. Science 2017;358:1019–27. https://doi.org/10.1126/science.aaq0180.Search in Google Scholar PubMed PubMed Central

91. Gootenberg, JS, Abudayyeh, OO, Lee, JW, Essletzbichler, P, Dy, AJ, Joung, J, et al.. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017;356:438–42. https://doi.org/10.1126/science.aam9321.Search in Google Scholar PubMed PubMed Central

92. Gootenberg, JS, Abudayyeh, OO, Kellner, MJ, Joung, J, Collins, JJ, Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018;360:439–44. https://doi.org/10.1126/science.aaq0179.Search in Google Scholar PubMed PubMed Central

93. Abudayyeh, OO, Gootenberg, JS, Konermann, S, Joung, J, Slaymaker, IM, Cox, DB, et al.. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016;353:aaf5573. https://doi.org/10.1126/science.aaf5573.Search in Google Scholar PubMed PubMed Central

94. Rauch, S, He, C, Dickinson, BC. Targeted m6A reader proteins to study epitranscriptomic regulation of single RNAs. J Am Chem Soc 2018;140:11974–81. https://doi.org/10.1021/jacs.8b05012.Search in Google Scholar PubMed PubMed Central

95. Aman, R, Ali, Z, Butt, H, Mahas, A, Aljedaani, F, Khan, MZ, et al.. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 2018;19:1. https://doi.org/10.1186/s13059-017-1381-1.Search in Google Scholar PubMed PubMed Central

96. Freije, CA, Myhrvold, C, Boehm, CK, Lin, AE, Welch, NL, Carter, A, et al.. Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell 2019;76:826–37.e11. https://doi.org/10.1016/j.molcel.2019.09.013.Search in Google Scholar PubMed PubMed Central

97. Batra, R, Nelles, DA, Pirie, E, Blue, SM, Marina, RJ, Wang, H, et al.. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell 2017;170:899–912.e10. https://doi.org/10.1016/j.cell.2017.07.010.Search in Google Scholar PubMed PubMed Central

98. Wang, F, Wang, L, Zou, X, Duan, S, Li, Z, Deng, Z, et al.. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 2019;37:708–29. https://doi.org/10.1016/j.biotechadv.2019.03.016.Search in Google Scholar PubMed

99. Gee, P, Xu, H, Hotta, A. Cellular reprogramming, genome editing, and alternative CRISPR Cas9 technologies for precise gene therapy of Duchenne muscular dystrophy. Stem Cell Int 2017;2017:8765154. https://doi.org/10.1155/2017/8765154.Search in Google Scholar PubMed PubMed Central

100. Zhang, N, Zhi, H, Curtis, BR, Rao, S, Jobaliya, C, Poncz, M, et al.. CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes. Blood 2016;127:675–80. https://doi.org/10.1182/blood-2015-10-675751.Search in Google Scholar PubMed PubMed Central

101. Zhang, H, McCarty, N. CRISPR-Cas9 technology and its application in haematological disorders. Br J Haematol 2016;175:208–25. https://doi.org/10.1111/bjh.14297.Search in Google Scholar PubMed PubMed Central

102. Osborn, MJ, Gabriel, R, Webber, BR, DeFeo, AP, McElroy, AN, Jarjour, J, et al.. Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther 2015;26:114–26. https://doi.org/10.1089/hum.2014.111.Search in Google Scholar PubMed PubMed Central

103. Zhang, C, Xiao, B, Jiang, Y, Zhao, Y, Li, Z, Gao, H, et al.. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. mBio 2014;5:e01414–14. https://doi.org/10.1128/mBio.01414-14.Search in Google Scholar PubMed PubMed Central

104. Yang, M, Zhang, L, Stevens, J, Gibson, G. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line. Bone 2014;69:118–25. https://doi.org/10.1016/j.bone.2014.09.005.Search in Google Scholar PubMed

105. Ott de Bruin, LM, Volpi, S, Musunuru, K. Novel genome-editing tools to model and correct primary immunodeficiencies. Front Immunol 2015;6:250. https://doi.org/10.3389/fimmu.2015.00250.Search in Google Scholar PubMed PubMed Central

106. Kang, Y, Zheng, B, Shen, B, Chen, Y, Wang, L, Wang, J, et al.. CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH. Hum Mol Genet 2015;24:7255–64. https://doi.org/10.1093/hmg/ddv425.Search in Google Scholar PubMed

107. Kim, S, Huang, LW, Snow, KJ, Ablamunits, V, Hasham, MG, Young, TH, et al.. A mouse model of conditional lipodystrophy. Proc Natl Acad Sci USA 2007;104:16627–32. https://doi.org/10.1073/pnas.0707797104.Search in Google Scholar PubMed PubMed Central

108. Croasdell, A, Duffney, PF, Kim, N, Lacy, SH, Sime, PJ, Phipps, RP. PPARγ and the innate immune system mediate the resolution of inflammation. PPAR Res 2015;2015:549691. https://doi.org/10.1155/2015/549691.Search in Google Scholar PubMed PubMed Central

109. Bibikova, M, Golic, M, Golic, KG, Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 2002;161:1169–75. https://doi.org/10.1093/genetics/161.3.1169.Search in Google Scholar PubMed PubMed Central

110. Tebas, P, Stein, D, Tang, WW, Frank, I, Wang, SQ, Lee, G, et al.. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014;370:901–10. https://doi.org/10.1056/nejmoa1300662.Search in Google Scholar PubMed PubMed Central

111. Fujikawa, T, Ishihara, H, Leach, JE, Tsuyumu, S. Suppression of defense response in plants by the avrBs3/pthA gene family of Xanthomonas spp. MPMI (Mol Plant-Microbe Interact) 2006;19:342–9. https://doi.org/10.1094/mpmi-19-0342.Search in Google Scholar

112. Stoddard, BL. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 2011;19:7–15. https://doi.org/10.1016/j.str.2010.12.003.Search in Google Scholar PubMed PubMed Central

113. Boissel, S, Jarjour, J, Astrakhan, A, Adey, A, Gouble, A, Duchateau, P, et al.. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 2014;42:2591–601. https://doi.org/10.1093/nar/gkt1224.Search in Google Scholar PubMed PubMed Central

Received: 2021-07-18
Accepted: 2021-11-10
Published Online: 2021-12-08

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/hmbci-2021-0062/html
Scroll to top button