Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 29, 2020

Preparation of kraft lignin-based activated carbon fiber electrodes for electric double layer capacitors using an ionic liquid electrolyte

  • Nutthira Pakkang , Manish Kumar , Shogo Taira , Keiichi Koda , Kengo Shigetomi and Yasumitsu Uraki EMAIL logo
From the journal Holzforschung

Abstract

This article demonstrates the development of activated carbon fiber electrodes produced from hardwood kraft lignin (HKL) to fabricate electric double layer capacitors (EDLCs) with high energy and power densities using an ionic liquid (IL) electrolyte. A mixture solution of HKL, polyethylene glycol as a sacrificial polymer, and hexamethylenetetramine as a crosslinker in dimethylformamide/acetic acid (6/4) was electrospun, and the obtained fibers were easily thermostabilized, followed by carbonization and steam activation to yield activated carbon fibers (ACFs). The electrochemical performance of EDLCs assembled with the ACFs, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) as an IL electrolyte and a cellulosic separator was insufficient due to the low conductivity of the electrode. The conductivity of the electrode was improved successfully by spraying conductive carbon black (CB) onto the fibers mat during electrospinning. The CB containing electrodes with improved conductivity gave the resulting EDLCs a higher electrochemical performance, with an energy density of 91.5 Wh kg−1 and a power density of 76.2 kW kg−1.


Corresponding author: Yasumitsu Uraki, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan, E-mail:

Funding source: Japan Society for the Promotion of Science

Award Identifier / Grant number: JP19J22306

Acknowledgments

We are grateful to Machinery Lab. of the Institute for Catalysis, Hokkaido University, for preparing a container for thermostabilization of electrospun lignin mat.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by JSPS KAKENHI Grant Number JP19J22306.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ago, M., Borghei, M., Haataja, J.S., and Rojas, O.J. (2016). Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes. RSC Adv. 6: 85802–85810, https://doi.org/10.1039/C6RA17536H.Search in Google Scholar

Aso, T., Koda, K., Kubo, S., Yamada, T., Nakajima, I., and Uraki, Y. (2013). Preparation of novel lignin-based cement dispersants from isolated lignins. J. Wood Chem. Technol. 33: 286–298, https://doi.org/10.1080/02773813.2013.794841.Search in Google Scholar

Braun, J.L., Holtman, K.M., and Kadla, J.F. (2005). Lignin-based carbon fibers: oxidative thermostabilization of kraft lignin. Carbon 43: 385–394, https://doi.org/10.1016/j.carbon.2004.09.027.Search in Google Scholar

Cericola, D., Ruch, P., Foelske-Schmitz, A., Weingarth, D., Kötz, R., (2011). Effect of water on the aging of activated carbon based electrochemical double layer capacitors during constant voltage load tests. Int. J. Electrochem. Sci. 6, 988–996. https://journals.indexcopernicus.com/search/details?id=8778.Search in Google Scholar

Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., and Taberna, L.P. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313: 1760–1763, https://doi.org/10.1126/science.1132195.Search in Google Scholar PubMed

Cline, S.P. and Smith, P.M. (2017). Opportunities for lignin valorization: an exploratory process. Energy Sustain. Soc. 7: 26, https://doi.org/10.1186/s13705-017-0129-9.Search in Google Scholar

Daraghmeh, A., Hussain, S., Saadeddin, I., Servera, L., Xuriguera, E., Cornet, A., and Cirera, A. (2017). A study of carbon nanofibers and active carbon as symmetric supercapacitor in aqueous electrolyte: a comparative study. Nanoscale Res. Lett. 12: 639, https://doi.org/10.1186/s11671-017-2415-z.Search in Google Scholar PubMed PubMed Central

De Vos, N., Maton, C., and Stevens, C.V. (2014). Electrochemical stability of ionic liquids: general influences and degradation mechanisms. ChemElectroChem 1: 1258–1270, https://doi.org/10.1002/celc.201402086.Search in Google Scholar

Den, W., Sharma, V.K., Lee, M., Nadadur, G., and Varma, R.S. (2018). Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Front. Chem. 6: 141, https://doi.org/10.3389/fchem.2018.00141.Search in Google Scholar PubMed PubMed Central

Deng, L., Young, R.J., Kinloch, I.A., Abdelkader, A.M., Holmes, S.M., Rio, D.A.D.H.D., and Eichhorn, S.J. (2013). Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Interfaces 5: 9983-9990, https://doi.org/10.1021/am403622v.Search in Google Scholar PubMed PubMed Central

Dikio, E.D., Shooto, N.D., Thema, F.T., and Farah, A.M. (2013). Raman and TGA study of carbon nanotubes synthesized over Mo/Fe catalyst on aluminium oxide, calcium carbonate and magnesium oxide support. Chem. Sci. Trans. 2: 1160–1173, https://doi.org/10.7598/cst2013.519.Search in Google Scholar

Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., and Saito, R. (2010). Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10: 751–758, https://doi.org/10.1021/nl904286r.Search in Google Scholar

Espinoza-Acosta, J.L., Torres-Chávez, P.I., Olmedo-Martínez, J.L., Vega-Rios, A., Flores-Gallardo, S., and Zaragoza-Contreras, E.A. (2018). Lignin in storage and renewable energy applications: a review. J. Energy Chem. 27: 1422–1438, https://doi.org/10.1016/j.jechem.2018.02.015.Search in Google Scholar

Ganewatta, M.S., Lokupitiya, H.N., and Tang, C. (2019). Lignin biopolymers in the age of controlled polymerization. Polymers 11: 1176, https://doi.org/10.3390/polym11071176.Search in Google Scholar

Gao, Q., Demarconnay, L., Raymundo-Piñero, E., and Béguin, F. (2012). Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 5: 9611, https://doi.org/10.1039/C2EE22284A.Search in Google Scholar

Guo, N., Li, M., Sun, X., Wang, F., and Yang, R. (2017). Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem. 19: 2595–2602, https://doi.org/10.1039/C7GC00506G.Search in Google Scholar

Hayyan, M., Mjalli, F.S., Hashim, M.A., AlNashef, I.M., and Mei, T.X. (2013). Investigating the electrochemical windows of ionic liquids. J. Ind. Eng. Chem. 19: 106–112, https://doi.org/10.1016/j.jiec.2012.07.011.Search in Google Scholar

Jayawickramage, R.A.P. and Ferraris, J.P. (2019). High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes. Nanotechnology 30: 155402, https://doi.org/10.1088/1361-6528/aafe95.Search in Google Scholar

Jayawickramage, R.A.P., Balkus, K.J., and Ferraris, J.P. (2019). Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors. Nanotechnology 30: 355402, https://doi.org/10.1088/1361-6528/ab2274.Search in Google Scholar

Kadla, J.F., Kubo, S., Venditti, R.A., Gilbert, R.D., Compere, A.L., and Griffith, W. (2002). Lignin-based carbon fibers for composite fiber applications. Carbon 40: 2913–2920, https://doi.org/10.1016/s0008-6223(02)00248-8.Search in Google Scholar

Kim, T., Jung, G., Yoo, S., Suh, K.S., and Ruoff, R.S. (2013). Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7: 6899–6905, https://doi.org/10.1021/nn402077v.Search in Google Scholar PubMed

Kiseleva, E.A., Zhurilova, M.A., Kochanova, S.A., Shkolnikov, E.J., Tarasenko, A.B., Zaitseva, O.V., Uryupina, O.V., and Valyano, G.V. (2018). Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters. J. Phys. Conf. Ser. 946: 012030, https://doi.org/10.1088/1742-6596/946/1/012030.Search in Google Scholar

Klose, M., Reinhold, R., Logsch, F., Wolke, F., Linnemann, J., Stoeck, U., Oswald, S., Uhlemann, M., Balach, J., Markowski, J., et al. (2017). Softwood lignin as a sustainable feedstock for porous carbons as active material for supercapacitors using an ionic liquid electrolyte. ACS Sustain. Chem. Eng. 5: 4094–4102, https://doi.org/10.1021/acssuschemeng.7b00058.Search in Google Scholar

Koda, K., Taira, S., Kubota, A., Isozaki, T., You, X., Uraki, Y., Sugimura, K., and Nishio, Y. (2019). Development of lignin-based terpolyester film and its application to separator material for electric double-layer capacitor. J. Wood Chem. Technol. 39: 198–213, https://doi.org/10.1080/02773813.2018.1562472.Search in Google Scholar

Kołodyńska, D., Gęca, M., Pylypchuk, I.V., and Hubicki, Z. (2016). Development of new effective sorbents based on nanomagnetite. Nanoscale Res. Lett. 11: 152, https://doi.org/10.1186/s11671-016-1371-3.Search in Google Scholar PubMed PubMed Central

Kumar, M., Hietala, M., and Oksman, K. (2019). Lignin-based electrospun carbon nanofibers. Front. Mater. 6: 62, https://doi.org/10.3389/fmats.2019.00062.Search in Google Scholar

Lei, C., Markoulidis, F., Ashitaka, Z., and Lekakou, C. (2013). Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC). Electrochim. Acta 92: 183–187, https://doi.org/10.1016/j.electacta.2012.12.092.Search in Google Scholar

Lei, D., Li, X.D., Seo, M.K., Khil, M.S., Kim, H.Y., and Kim, B.S. (2017). NiCo2 O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors. Polymer 132: 31–40, https://doi.org/10.1016/j.polymer.2017.10.051.Search in Google Scholar

Lora, J. (2008). Industrial commercial lignins: sources, properties and applications. In: Belgacem, M.N., and Gandini, A. (Eds.). Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp. 225–241.10.1016/B978-0-08-045316-3.00010-7Search in Google Scholar

Luo, J., Genco, J., Cole, B., and Fort, R. (2011). Lignin recovered from the near-neutral hemicellulose extraction process as a precursor for carbon fiber. Bioresources 6: 4566–4593.Search in Google Scholar

Mao, Z.X., Wang, C., Shan, Q., Wang, M.J., Zhang, Y., Ding, W., Chen, S., Li, L., Li, J., and Wei, Z. (2018). An unusual low-surface-area nitrogen doped carbon for ultrahigh gravimetric and volumetric capacitances. J. Mater. Chem. 6: 8868–8873, https://doi.org/10.1039/C8TA02198H.Search in Google Scholar

Mhamane, D., Suryawanshi, A., Banerjee, A., Aravindan, V., Ogale, S., and Srinivasan, M. (2013). Non-aqueous energy storage devices using graphene nanosheets synthesized by green route. AIP Adv. 3: 042112, https://doi.org/10.1063/1.4802243.Search in Google Scholar

Milotskyi, R., Szabó, L., Takahashi, K., and Bliard, C. (2019). Chemical modification of plasticized lignins using reactive extrusion. Front. Chem. 7: 633, https://doi.org/10.3389/fchem.2019.00633.Search in Google Scholar PubMed PubMed Central

Mousavi, M.P.S., Wilson, B.E., Kashefolgheta, S., Anderson, E.L., He, S., Bühlmann, P., and Stein, A. (2016). Ionic liquids as electrolytes for electrochemical double-layer capacitors: structures that optimize specific energy. ACS Appl. Mater. Interfaces 8: 3396–3406, https://doi.org/10.1021/acsami.5b11353.Search in Google Scholar PubMed

Murayama, I., Yoshimoto, N., Egashira, M., Morita, M., Kobayashi, Y., and Ishikawa, M. (2005). Characteristics of electric double layer capacitors with an ionic liquid electrolyte containing Li ion. Electrochemistry 73: 600–602, https://doi.org/10.5796/electrochemistry.73.600.Search in Google Scholar

Neimark, A.V., Lin, Y., Ravikovitch, P.I., and Thommes, M. (2009). Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47: 1617–1628, https://doi.org/10.1016/j.carbon.2009.01.050.Search in Google Scholar

Norberg, I., Nordström, Y., Drougge, R., Gellerstedt, G., and Sjöholm, E. (2012). A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. J. Appl. Polym. Sci. 128: 3824–3830, https://doi.org/10.1002/app.38588.Search in Google Scholar

Pandit, B., Dubal, D.P., and Sankapal, B.R. (2017). Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 242: 382–389, https://doi.org/10.1016/j.electacta.2017.05.010.Search in Google Scholar

Park, J.H., Rana, H.H., Lee, J.Y., and Park, H.S. (2019). Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J. Mater. Chem. A 7: 16962–16968, https://doi.org/10.1039/C9TA03519B.Search in Google Scholar

Ramachandran, R. and Wang, F. (2018). Electrochemical capacitor performance: influence of aqueous electrolytes. In: Liudvinavicius, L. (Ed.). Supercapacitors – theoretical and practical solutions. InTech, London, UK, pp. 52–68.10.5772/intechopen.70694Search in Google Scholar

Saha, D., Li, Y., Bi, Z., Chen, J., Keum, J.K., Hensley, D.K., Grappe, H.A., Meyer, H.M., Dai, S., Paranthaman, M.P., et al. (2014). Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30: 900–910, https://doi.org/10.1021/la404112m.Search in Google Scholar PubMed

Salmani, L. and Nouri, M. (2016). Electrospun silk fibroin nanofibers with improved surface texture. J. Text. Polym. 4: 75.Search in Google Scholar

Sangchoom, W., Walsh, D.A., and Mokaya, R. (2018). Valorization of lignin waste: high electrochemical capacitance of lignin-derived carbons in aqueous and ionic liquid electrolytes. J. Mater. Chem. A, 6: 18701–18711, https://doi.org/10.1039/C8TA07632D.Search in Google Scholar

Shiraishi, S., Miyauchi, T., Sasaki, R., Nishina, N., Oya, A., and Hagiwara, R. (2007). Electric double layer capacitance of activated carbon nanofibers in ionic liquid: EMImBF4. Electrochemistry 75: 619–621, https://doi.org/10.5796/electrochemistry.75.619.Search in Google Scholar

Sing, K.S.W. (1982). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (provisional). Pure Appl. Chem. 54: 2201–2218, https://doi.org/10.1351/pac198254112201.Search in Google Scholar

Sixta, H. (2008). Handbook of pulp. Wiley-VCH Verlag, Weinheim.Search in Google Scholar

Soeda, K., Yamagata, M., and Ishikawa, M. (2015). Outstanding features of alginate-based gel electrolyte with ionic liquid for electric double layer capacitors. J. Power Sources 280: 565–572, https://doi.org/10.1016/j.jpowsour.2015.01.144.Search in Google Scholar

Szabó, L., Milotskyi, R., Fujie, T., Tsukegi, T., Wada, N., Ninomiya, K., and Takahashi, K. (2019). Short carbon fiber reinforced polymers: utilizing lignin to engineer potentially sustainable resource-based biocomposites. Front. Chem. 7, https://doi.org/10.3389/fchem.2019.00757.Search in Google Scholar PubMed PubMed Central

Taira, S., Kurihara, M., Koda, K., Sugimura, K., Nishio, Y., and Uraki, Y. (2019). TEMPO-oxidized cellulose nanofiber-reinforced lignin based polyester films as a separator for electric double-layer capacitor. Cellulose 26: 569–580, https://doi.org/10.1007/s10570-018-2101-z.Search in Google Scholar

Thakur, V.K., Thakur, M.K., Raghavan, P., and Kessler, M.R. (2014). Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain. Chem. Eng. 2: 1072–1092, https://doi.org/10.1021/sc500087z.Search in Google Scholar

Tuck, C.O., Perez, E., Horvath, I.T., Sheldon, R.A., and Poliakoff, M. (2012). Valorization of biomass: deriving more value from waste. Science 337: 695–699, https://doi.org/10.1126/science.1218930.Search in Google Scholar PubMed

Uraki, Y., Kubo, S., Nigo, N., Sano, Y., and Sasaya, T. (1995). Preparation of carbon fibers from organosolv lignin obtained by aqueous acetic acid pulping. Holzforschung 49: 343–350, https://doi.org/10.1515/hfsg.1995.49.4.343.Search in Google Scholar

Uraki, Y., Nakatani, A., Kubo, S., and Sano, Y. (2001). Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin. J. Wood Sci. 47: 465–469, https://doi.org/10.1007/bf00767899.Search in Google Scholar

Wang, J., Tang, J., Xu, Y., Ding, B., Chang, Z., Wang, Y., Hao, X., Dou, H., Kim, J.H., Zhang, X., et al. (2016). Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy 28: 232–240, https://doi.org/10.1016/j.nanoen.2016.08.043.Search in Google Scholar

Wang, X., Li, Y., Lou, F., Buan, M.E.M., Sheridan, E., and Chen, D. (2017). Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. RSC Adv. 7: 23859–23865, https://doi.org/10.1039/C7RA01630A.Search in Google Scholar

Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99: 2071–2084, https://doi.org/10.1021/cr980032t.Search in Google Scholar PubMed

Yang, C.S., Shang, D.S., Chai, Y.S., Yan, L.Q., Shen, B.G., and Sun, Y. (2016). Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces. Phys. Chem. Chem. Phys. 18: 12466–12475, https://doi.org/10.1039/C6CP00823B.Search in Google Scholar PubMed

You, X., Koda, K., Yamada, T., and Uraki, Y. (2015). Preparation of electrode for electric double layer capacitor from electrospun lignin fibers. Holzforschung 69: 1097–1106, https://doi.org/10.1515/hf-2014-0262.Search in Google Scholar

You, X., Koda, K., Yamada, T., and Uraki, Y. (2016a). Preparation of high-performance internal tandem electric double-layer capacitors (IT-EDLCs) from melt-spun lignin fibers. J. Wood Chem. Technol. 36: 418–431, https://doi.org/10.1080/02773813.2016.1212893.Search in Google Scholar

You, X., Duan, J., Koda, K., Yamada, T., and Uraki, Y. (2016b). Preparation of electric double layer capacitors (EDLCs) from two types of electrospun lignin fibers. Holzforschung 70: 661–671, https://doi.org/10.1515/hf-2015-0175.Search in Google Scholar

Zhang, K., Liu, M., Zhang, T., Min, X., Wang, Z., Chai, L., and Shi, Y. (2019). High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization. J. Mater. Chem. A 7: 26838–26848, https://doi.org/10.1039/C9TA04369A.Search in Google Scholar

Zuliani, E.J., Zereen, M., Charles, Q.J., Donald, W.K. (2013). Effects of temperature on electrochemical double layer capacitor performance using activated carbon electrodes. In: 223rd ECS meeting. The Electrochemical Society, Canada.10.1149/MA2013-01/11/574Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2019-0291).

Received: 2019-11-20
Accepted: 2020-03-19
Published Online: 2020-05-29

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2019-0291/html
Scroll to top button