Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 25, 2019

Analysis of tension and bending fracture behavior in moso bamboo (Phyllostachys pubescens) using synchrotron radiation micro-computed tomography (SRμCT)

  • Huanrong Liu , Guanyun Peng , Yuan Chai , Aiyue Huang , Zehui Jiang and Xiubiao Zhang EMAIL logo
From the journal Holzforschung

Abstract

Bamboo is a natural bio-composite material that is both tough and possesses excellent mechanical properties. Its delicate structure and fiber arrangements play an important role in the mechanical properties and the fracture performance of bamboo. In this study, the fracture behaviors of bamboo due to tensile strength and bending were investigated using synchrotron radiation micro-computed tomography and environmental scanning electron microscopy (ESEM). Both tension and bending tests revealed that fibers are the key factors for bearing extra load and impeding crack propagation. Crack paths were found to be different in bamboo strips with different fiber percentages, and the interface between pulled-out fiber bundles and fiber break (in helix breaks and shearing break) was observed to be typical fracture characteristics in tension. Moreover, advanced micro-matrix cracking, interface debonding, fiber bundle bridging and the splitting of cell wall layers were found to be important fracture characteristics in bending. Both in tension and bending, a reasonably weak interface appeared to be beneficial for improving fracture toughness of fiber-reinforced bamboo. Thus, it is clear that “fiber bridging” mechanisms and “shear-lag theory” are well exhibited in bamboo.

Award Identifier / Grant number: 31700493

Award Identifier / Grant number: 2016YFD0600905

Funding statement: This work was financially supported by the National Natural Science Foundation of China (NSFC, Funder Id: http://dx.doi.org/10.13039/501100001809, grant no. 31700493) and the National Key Research & Development Program of China (2016YFD0600905). The authors appreciate the Shanghai Synchrotron Radiation Facility for the technical service. The authors appreciate Biao Huang and Xiang Liu for the help to the figures.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Amada, S., Untao, S. (2001) Fracture properties of bamboo. Composites B: Eng. 32:451–459.10.1016/S1359-8368(01)00022-1Search in Google Scholar

Amada, S., Ichikawa, Y., Munekata, T., Nagase, Y., Shimizu, H. (1997) Fiber texture and mechanical graded structure of bamboo. Composites B: Eng. 28B:13–20.10.1016/S1359-8368(96)00020-0Search in Google Scholar

Baensch, F., Zauner, M., Sanabria, S.J., Sause, M.G.R, Pinzer, B.R., Brunner, A.J., Stampanoni, M., Niemz, P. (2015) Damage evolution in wood: synchrotron radiation micro-computed tomography (SRuCT) as a complementary tool for interpreting acoustic emission (AE) behavior. Holzforschung 69:1015–1025.10.1515/hf-2014-0152Search in Google Scholar

Buffière, J.Y., Maire, E., Cloetens, P., Lormand, G., Fougères, R. (1999) Characterization of internal damage in a MMCP using X-ray synchrotron phase contrast microtomography. Acta Mater. 47:1613–1625.10.1016/S1359-6454(99)00024-5Search in Google Scholar

Burgert, I., Frühmann, K., Keckes, J., Fratzl, P., Stanzl-Tschegg, S. (2003) Microtensile testing of wood fibers combined with video extensometry for efficient strain detection. Holzforschung 57:661–664.10.1515/HF.2003.099Search in Google Scholar

Burgert, I., Frühmann, K., Keckes, J., Fratzl, P., Stanzl-Tschegg, S. (2004) Structure–function relationships of four compression wood types: micromechanical properties at the tissue and fibre level. Trees 18:480–485.10.1007/s00468-004-0334-ySearch in Google Scholar

Cloetens, P., Mache, R., Schlenker, M., Lerbs-Mache, S. (2006) Quantitative phase tomography of Arabidopsis seeds reveals intercellular void network. Proc. Natl. Acad. Sci. USA 103:14626–14630.10.1073/pnas.0603490103Search in Google Scholar PubMed PubMed Central

Cosmi, F., Bernasconi, A. (2013) Micro-CT investigation on fatigue damage evolution in short fibre reinforced polymers. Compos. Sci. Technol. 79:70–76.10.1016/j.compscitech.2013.02.008Search in Google Scholar

Dhondt, S., Vanhaeren, H., Denis, V.L., Cnudde, V., Inzé, D. (2010) Plant structure visualization by high-resolution X-ray computed tomography. Trends Plant Sci. 15:419–422.10.1016/j.tplants.2010.05.002Search in Google Scholar PubMed

Fratzl, P., Weinkamer, R. (2007) Nature’s hierarchical materials. Prog. Mater. Sci. 52:1263–1334.10.1016/j.pmatsci.2007.06.001Search in Google Scholar

Forsberg, F. X-ray Microtomography and Digital Volume Correlation for Internal Deformation and Strain Analysis. Lulea University of Technology, 2008.Search in Google Scholar

Fuhr, M., Stührk, C., Münch, B., Schwarze, F.W.M.R., Schubert, M. (2012) Automated quantification of the impact of the wood-decay fungus Physisporinus vitreus on the cell wall structure of Norway spruce by tomographic microscopy. Wood Sci. Technol. 46:769–779.10.1007/s00226-011-0442-ySearch in Google Scholar

GB/T 15780-1995. Test methods for physical and mechanical properties of bamboo.Search in Google Scholar

Hayakawa, Y., Hayakawa, K., Inagaki, M., Kaneda, T., Nakao, K., Nogami, K., Sakai, T., Sato, I., Takahashi, Y., Tanaka, T. (2013) Computed tomography for light materials using a monochromatic X-ray beam produced by parametric X-ray radiation. Nucl. Inst. Meth. Phys. Res. B 309:230–236.10.1016/j.nimb.2013.01.025Search in Google Scholar

Jiang, Z.H. Bamboo and Rattan in the World. Liaoning Science and Technology Press, China, 2002.Search in Google Scholar

Kaminuma, E., Yoshizumi, T., Wada, T., Matsui, M., Toyoda, T. (2008) Quantitative analysis of heterogeneous spatial distribution of Arabidopsis leaf trichomes using micro X-ray computed tomography. Plant J. 56:470–482.10.1111/j.1365-313X.2008.03609.xSearch in Google Scholar PubMed

Launey, M.E., Chen, P.Y., Mckittrick, J., Ritchie, R.O. (2010) Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater. 6:1505–1514.10.1016/j.actbio.2009.11.026Search in Google Scholar PubMed

Li, H.B., Shen, S.P. (2011) The mechanical properties of bamboo and vascular bundles. Mater. Res. Soc. 26:2749–2756.10.1557/jmr.2011.314Search in Google Scholar

Liese, W. (1987) Research on bamboo. Wood Sci. Technol. 21:189–209.10.1007/BF00351391Search in Google Scholar

Liese, W. (1998) The Anatomy of Bamboo Culms. Technical report, International Network for Bamboo and Rattan, Beijing.10.1163/9789004502468Search in Google Scholar

Liu, H.R., Jiang, Z.H., Zhang, X.B., Liu, X.E., Sun, Z.J. (2014) Effect of fiber on tensile properties of moso bamboo. BioResources 9:6888–6898.10.15376/biores.9.4.6888-6898Search in Google Scholar

Liu, H.R., Jiang, Z.H., Fei, B.H., Hse, C., Sun, Z.J. (2015) Tensile behaviour and fracture mechanism of moso bamboo (Phyllostachys pubescens). Holzforschung 69:47–52.10.1515/hf-2013-0220Search in Google Scholar

Liu, H.R., Wang, X.Q., Zhang, X.B., Sun, Z.J., Jiang, Z.H. (2016) In situ detection of the fracture behaviour of moso bamboo (Phyllostachys pubescens) by scanning electron microscopy. Holzforschung 70:1183–1190.10.1515/hf-2016-0003Search in Google Scholar

Mannes, D., Marone, F., Lehmann, E., Stampanoni, M., Niemz, P. (2010) Application areas of synchrotron radiation tomographic microscopy for wood research. Wood Sci. Technol. 44:67–84.10.1007/s00226-009-0257-2Search in Google Scholar

Mayer, G. (2005) Rigid biological systems as models for synthetic composites. Science 310:1144–1147.10.1126/science.1116994Search in Google Scholar

Mayo, S.C., Chen, F., Evans, R. (2010) Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. J. Struct. Biol. 171:182–188.10.1016/j.jsb.2010.04.001Search in Google Scholar

Moghaddam, M.S., Bulcke, J.V., Wålinder, M.E.P., Claesson, P.M., Acker, J.V., Swerin, A. (2017) Microstructure of chemically modified wood using X-ray computed tomography in relation to wetting properties. Holzforschung 71:119–128.10.1515/hf-2015-0227Search in Google Scholar

Peng, G.Y., Jiang, Z.H., Liu, X.E., Fei, B.H., Yang, S.M., Qin, D.Ch., Ren, H.Q., Yu, Y., Xie, H.L. (2014) Detection of complex vascular system in bamboo node by X-ray μCT imaging technique. Holzforschung 68:223–227.10.1515/hf-2013-0080Search in Google Scholar

Ray, A.K., Mondal, S., Das, S.K., Ramachandrarao, P. (2005) Bamboo-A functionally graded composite-correlation between microstructure and mechanical strength. J. Mater. Sci. 40:5249–5253.10.1007/s10853-005-4419-9Search in Google Scholar

Ritchie, R.O. (1988) Mechanisms of fatigue crack-propagation in metals, ceramics and composites: role of crack tip shielding. Mater. Sci. Eng. A 103:15–28.10.1016/0025-5416(88)90547-2Search in Google Scholar

Salvo, L., Cloetens, P., Maire, E., Zabler, S., Blandin, J.J., Buffière, J.Y., Ludwig, W., Boller, E., Bellet, D., Josserond, C. (2003) X-ray micro-tomography an attractive characterisation technique in materials science. Nucl. Inst. Meth. Phys. Res. B 200:273–286.10.1016/S0168-583X(02)01689-0Search in Google Scholar

Shen, F., Chen, R.C., Xiao, T.Q. (2011) GPU-based parallel computing for fast image reconstruction in micro CT. Nucl. Technol. 34:401–405.Search in Google Scholar

Sippola, M., Frühmann, K. (2002) In situ longitudinal tensile tests of pine wood in an environmental scanning electron microscope. Holzforschung 56:669–675.10.1515/HF.2002.101Search in Google Scholar

Steppe, K., Cnudde, V., Girard, C., Lemeur, R., Cnudde, J.P., Jacobs, P. (2004) Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. J. Struct. Biol. 148:11–21.10.1016/j.jsb.2004.05.001Search in Google Scholar PubMed

Stock, S.R. (1999) X-ray microtomography of materials. Int. Mater. Rev. 44:141–164.10.1179/095066099101528261Search in Google Scholar

Studart, A.R. (2012) Towards high-performance bioinspired composites. Adv. Mater. 24:5024–5044.10.1002/adma.201201471Search in Google Scholar

Stuppy, W.H., Maisano, J.A., Colbert, M.W., Rudall, P.J., Rowe, T.B. (2003) Three-dimensional analysis of plant structure using high-resolution X-ray computed tomography. Trends Plant Sci. 8:2–6.10.1016/S1360-1385(02)00004-3Search in Google Scholar

Sun, Y.H., Jiang, Z.H., Zhang, X.B., Sun, Z.J., Yang, X.M., Liu, H.R. (2018) The impact performance of bamboo oriented strand board and computed tomography technique for detecting internal damage. BioResources 13:6707–6721.10.15376/biores.13.3.6707-6721Search in Google Scholar

Taylor, A., Plank, B., Standfest, G., Petutschnigg, A. (2013) Beech wood shrinkage observed at the microscale by a time series of X-ray computed tomographs (μXCT). Holzforschung 67:201–205.10.1515/hf-2012-0100Search in Google Scholar

Trtik, P., Dual, J., Keunecke, D., Mannes, D., Niemz, P., Stähli, P., Kaestner, A., Groso, A., Stampanoni, M. (2007) 3D imaging of microstructure of spruce wood. J. Struct. Biol. 159:46–55.10.1016/j.jsb.2007.02.003Search in Google Scholar PubMed

Tukiainen, P., Hughes, M. (2016) The cellular level mode I fracture behavior of spruce and birch in the RT crack propagation system. Holzforchung 70:157–165.10.1515/hf-2014-0297Search in Google Scholar

Wang, M.Y., Zimmermann, E.A., Riedel, C., Busseb, B., Li, S.M., Silberschmidt, V.V. (2017) Effect of micro-morphology of cortical bone tissue on fracture toughness and crack propagation. Procedia Structural Integrity 6:64–68.10.1016/j.prostr.2017.11.010Search in Google Scholar

Wang, Q.P., Fei, B.H., Jiang, M.L., Liu, X.E., Yang, S.M. (2018) Hydrothermal aging evaluation method of recombinant bamboo based on X-ray computed tomography technology. Acta Materiae Compositae Sinica 35:989–998.Search in Google Scholar

Wegst, U.G.K., Ashby, M.F. (2004) The mechanical efficiency of natural materials. Philos. Mag. 84:2167–2181.10.1080/14786430410001680935Search in Google Scholar

Withers, P.J., Preuss, M. (2012) Fatigue and damage in structural materials studied by X-Ray tomography. Annu. Rev. Mater. Res. 42:81–103.10.1146/annurev-matsci-070511-155111Search in Google Scholar

Received: 2018-11-27
Accepted: 2019-06-05
Published Online: 2019-07-25
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2018-0275/html
Scroll to top button