Skip to main content
Log in

On Fractional Heat Equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, the long-time behavior of the Cesaro mean of the fundamental solution for fractional Heat equation corresponding to random time changes in the Brownian motion is studied. We consider both stable subordinators leading to equations with the Caputo-Djrbashian fractional derivative and more general cases corresponding to differential-convolution operators, in particular, distributed order derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Arias-de Reyna, On the theorem of Frullani. Proc. Amer. Math. Soc. 109, No 1 (1990), 165–175; DOI: 10.1090/S0002-9939-1990-1007485-4.

    Article  MathSciNet  Google Scholar 

  2. M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications Inc., New York, 1992; Reprint of the 1972 Edition.

    MATH  Google Scholar 

  3. J. Bertoin, Lévy Processes, Vol. 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  4. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Vol. 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1987.

    Book  Google Scholar 

  5. N. H. Bingham, Limit theorems for occupation times of Markov processes. Z. Wahrsch. Verw. Gebiete 17 (1971), 1–22; DOI: 10.1007/BF00538470.

    Article  MathSciNet  Google Scholar 

  6. B. Baeumer and M. M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4, No 4 (2001), 481–500.

    MathSciNet  MATH  Google Scholar 

  7. Z.-Q. Chen, Time fractional equations and probabilistic representation. Chaos Solitons Fractals 102 (2017), 168–174; DOI: 10.1016/j.chaos.2017.04.029.

    Article  MathSciNet  Google Scholar 

  8. Z.-Q. Chen, P. Kim, T. Kumagai, and J. Wang, Heat kernel estimates for time fractional equations. Forum Math. 30, No 5 (2018), 1163–1192; DOI: 10.1515/forum-2017-0192.

    Article  MathSciNet  Google Scholar 

  9. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (Eds.), Tables of Integral Transforms, Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954.

    MATH  Google Scholar 

  10. A. N. Kochubei, Yu. G. Kondratiev, and J. L. da Silva, Random time change and related evolution equations. Time asymptotic behavior. Stochastics and Dynamics 4 (2019), Art. 2050034, 24 pp.; DOI: 10.1142/S0219493720500343.

  11. A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integral Equations Operator Theory 71, No 4 (2011), 583–600; DOI: 10.1007/s00020-011-1918-8.

    Article  MathSciNet  Google Scholar 

  12. Y.-C. Li, R. Sato, and S.-Y. Shaw, Ratio Tauberian theorems for positive functions and sequences in Banach lattices. Positivity 11, No 3 (2007), 433–447; DOI: 10.1007/s11117-007-2085-7.

    Article  MathSciNet  Google Scholar 

  13. A. Mimica, Heat kernel estimates for subordinate Brownian motions. Proc. Lond. Math. Soc. (3) 113, No 5 (2016), 627–648; DOI: 10.1112/plms/pdw043.

    Article  MathSciNet  Google Scholar 

  14. F. Mainardi, A. Mura, and G. Pagnini, The M-Wright function in time-fractional diffusion processes: A tutorial survey. Int. J. Differential Equ. 2010 (2010), Art. 104505, 29 pp.; DOI: 10.1155/2010/104505.

  15. M. M. Meerschaert and H.-P. Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41, No 3 (2004), 623–638; DOI: 10.1239/jap/1091543414.

    Article  MathSciNet  Google Scholar 

  16. M. M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time random walks. Stochastic Process. Appl. 118, No 9 (2008), 1606–1633; DOI: 10.1016/j.spa.2007.10.005.

    Article  MathSciNet  Google Scholar 

  17. M. Magdziarz and R. L. Schilling, Asymptotic properties of Brownian motion delayed by inverse subordinators. Proc. Amer. Math. Soc. 143, No 10 (2015), 4485–4501; DOI: 10.1090/proc/12588.

    Article  MathSciNet  Google Scholar 

  18. E. Seneta, Regularly Varying Functions, Vol. 508 of Lect. Notes Math., Springer, 1976.

    Book  Google Scholar 

  19. R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions: Theory and Applications. De Gruyter Studies in Math., De Gruyter, Berlin, 2 Edition, 2012.

    Book  Google Scholar 

  20. B. Toaldo, Convolution-type derivatives, hitting-times of subordinators and time-changed C0-semigroups. Potential Anal. 42, No 1 (2015), 115–140; DOI: 10.1007/s11118-014-9426-5.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochubei, A.N., Kondratiev, Y. & da Silva, J.L. On Fractional Heat Equation. Fract Calc Appl Anal 24, 73–87 (2021). https://doi.org/10.1515/fca-2021-0004

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0004

Keywords

Keywords

Navigation