Skip to main content
Log in

From continuous time random walks to the generalized diffusion equation

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We obtain a generalized diffusion equation in modified or Riemann-Liouville form from continuous time random walk theory. The waiting time probability density function and mean squared displacement for different forms of the equation are explicitly calculated. We show examples of generalized diffusion equations in normal or Caputo form that encode the same probability distribution functions as those obtained from the generalized diffusion equation in modified form. The obtained equations are general and many known fractional diffusion equations are included as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195 (1990), 127–293.

    Article  MathSciNet  Google Scholar 

  2. A. Caspi, R. Granek, and M. Elbaum, Enhanced diffusion in active intracellular transport. Phys. Rev. Lett. 85 (2000), 5655–5658.

    Article  Google Scholar 

  3. A.V. Chechkin, V. Gonchar, R. Gorenflo, N. Korabel, and I.M. Sokolov, Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Phys. Rev. E 78 (2008), Art. # 021111.

  4. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E, 66 (2002), Art. # 046129.

  5. A.V. Chechkin, R. Gorenflo, I.M. Sokolov and V.Yu. Gonchar, Distributed order fractional diffusion equation. Fract. Calc. Appl. Anal. 6, No 3 (2003), 259–279.

    MathSciNet  MATH  Google Scholar 

  6. A.V. Chechkin, J. Klafter and I.M. Sokolov, Fractional Fokker-Planck equation for ultraslow kinetics. EPL 63 (2003), 326–332.

    Article  Google Scholar 

  7. A. Chechkin, I.M. Sokolov and J. Klafter, Natural and modified forms of distributed order fractional diffusion equations. In. Fractional Dynamics: Recent Advances, World Scientific, Singapore (2011).

    Google Scholar 

  8. A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi. Higher Transcedential Functions, Vol. 3. McGraw-Hill, New York (1955).

    MATH  Google Scholar 

  9. W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York (1968).

    MATH  Google Scholar 

  10. K.S. Fa and K.G. Wang, Integrodifferential diffusion equation for continuous-time random walk. Phys. Rev. E 81 (2010), Art. # 011126.

  11. R. Garra and R. Garrappa, The Prabhakar or three parameter Mittag–Leffler function: Theory and application. Commun. Nonlin. Sci. Numer. Simul. 56 (March 2018), 314–329; DOI: 10.1016/j.cnsns.2017.08.018.

    Article  MathSciNet  Google Scholar 

  12. R. Garra, R. Gorenflo, F. Polito, and Z. Tomovski, Hilfer -Prabhakar derivatives and some applications. Appl. Math. Comput. 242 (2014), 576–589.

    MathSciNet  MATH  Google Scholar 

  13. R. Garrappa, F. Mainardi, and G. Maione, Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19, No 5 (2016) 1105–1160; DOi: 10.1515/fca-2016-0060; https://www.degruyter.com/view/j/fca.2016.19.issue-5/issue-files/fca.2016.19.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  14. I. Golding and E. C. Cox, Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96 (2006), Art. # 098102.

  15. H.J. Haubold, A.M. Mathai, and R.K. Saxena, Mittag -Leffler functions and their applications. J. Appl. Math. 2011 (2011), Art. # 298628.

  16. R. Hilfer, Exact solutions for a class of fractal time random walks. Fractals 3 (1995), 211–216.

    Article  MathSciNet  Google Scholar 

  17. R. Hilfer and L. Anton, Fractional master equations and fractal time random walks. Phys. Rev. E 51 (1995), Art. # R848.

  18. F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 76 (2013), Art. # 046602.

  19. B.D. Hughes, Random Walks and Random Environments, Vol. 1. Random Walks. Clarendon Press, Oxford (1995).

    MATH  Google Scholar 

  20. M.C. Jullien, J. Paret, and P. Tabeling, Richardson pair dispersion in two-dimensional turbulence. Phys. Rev. Lett. 82 (1999), 2872–2875.

    Article  Google Scholar 

  21. J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sërensen, L. Oddershede, and R. Metzle. In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules. Phys. Rev. Lett. 106 (2011), Art. # 048103.

  22. A. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integr. Eq. Operator Theory 71 (2011), 583–600.

    Article  MathSciNet  Google Scholar 

  23. R. Kutner and J. Masoliver, The continuous time random walk, still trendy: fifty-year history, state of art and outlook. Eur. Phys. J., B 90 (2017), Art. # 50.

  24. M.A. Lomholt, L. Lizana, R. Metzler, and T. Ambjörnsson, Microscopic origin of the logarithmic time evolution of aging processes in complex systems. Phys. Rev. Lett. 110 (2013), Art. # 208301.

  25. Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnamica 24 (1999), 207–233.

    MathSciNet  MATH  Google Scholar 

  26. Y. Luchko and M. Yamamoto, General time fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 19, No 3 (2016), 676–695; DOi: 10.1515/fca-2016-0036; https://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  27. E. Lutz, Fractional Langevin equation. Phys. Rev. E 64 (2001), Art. # 051106.

  28. R. Mankin, K. Laas, and A. Sauga, Generalized Langevin equation with multiplicative noise: Temporal behavior of the autocorrelation functions. Phys. Rev. E 83 (2011), Art. # 061131.

  29. F. Mainardi. Fractional Calculus and Waves in Linear Viscoelesticity: An Introduction to Mathematical Models. Imperial College Press, London (2010).

    Book  Google Scholar 

  30. M.M. Meerschaert, D.A. Benson, H.P. Scheffler, and B. Baeumer, Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65 (2002), Art. # 041103.

  31. M.M. Meerschaert and H. P. Scheffler, Stochastic model for ultraslow diffusion. Stochastic Process. Appl. 116 (2006), 1215–1235.

    Article  MathSciNet  Google Scholar 

  32. R. Metzler, J.-H. Jeon, A.G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16 (2014), Art. # 24128.

  33. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

  34. E.W. Montroll and G.H. Weiss, Random Walks on Lattices, II. J. Math. Phys. 6 (1965), 167–181.

    Article  MathSciNet  Google Scholar 

  35. K. Nørregaard, R. Metzler, C.M. Ritter, K. Berg-Sørensen, and L.B. Oddershede, Manipulation and motion of organelles and single molecules in living cells. Chem. Rev. 117 (2017), 4342–4375.

    Article  Google Scholar 

  36. M.D. Ortigueira and J.A.T. Machado, What is a fractional derivative. J. Comput. Phys. 293 (2015), 4–13.

    Article  MathSciNet  Google Scholar 

  37. J. Paneva-Konovska, Convergence of series in three parametric Mittag-Leffler functions. Math. Slovaca 64 (2014), 73–84.

    Article  MathSciNet  Google Scholar 

  38. J. Paneva-Konovska. From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence. World Scientific Publishing, London (2016).

    Book  Google Scholar 

  39. J. Paneva-Konovska, Overconvergence of series in generalized Mittag-Leffler functions. Fract. Calc. Appl. Anal. 20, No 2 (2017), 506–520; DOi: 10.1515/fca-2017-0026; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  40. I. Podlubny. Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  41. N. Pottier, Relaxation times distributions for an anomalously diffusing particle. Physica A 390 (2011), 2863–2879.

    Article  Google Scholar 

  42. T.R. Prabhakar, A singular equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19 (1971), 7–15.

    MathSciNet  MATH  Google Scholar 

  43. J.F. Reverey, J.-H. Jeon, H. Bao, M. Leippe, R. Metzler, and C. Selhuber-Unkel, Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogeni. Acanthamoeba castellanii. Sci. Rep. 5 (2014), Art. # 11690.

  44. L.F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. A 110 (1926), 709–737.

    Google Scholar 

  45. L.P. Sanders, M.A. Lomholt, L. Lizana, K. Fogelmark, R. Metzler, and T. Ambjörnsson, Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: Ageing and ultraslow diffusion. New J. Phys. 16 (2014), Art. # 113050.

  46. T. Sandev, A. Chechkin, H. Kantz, and R. Metzler, Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel. Fract. Calc. Appl. Anal. 18, No 4 (2015), 1006–1038; DOi: 10.1515/fca-2015-0059; https://www.degruyter.com/view/j/fca.2015.18.issue-4/issue-files/fca.2015.18.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  47. T. Sandev, A. Chechkin, N. Korabel, H. Kantz, I.M. Sokolov and R. Metzler, Distributed -order diffusion equations and multifractality: Models and solutions. Phys. Rev. E 92 (2015), Art. # 042117.

  48. T. Sandev, R. Metzler and Ž. Tomovski, Velocity and displacement correlation functions for fractional generalized Langevin equations. Fract. Calc. Appl. Anal. 15, No 3 (2012), 426–450; DOi: 10.2478/s13540-012-0031-2; https://www.degruyter.com/view/j/fca.2012.15.issue-3/issue-files/fca.2012.15.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  49. T. Sandev, I.M. Sokolov, R. Metzler, and A. Chechkin, Beyond monofractional kinetics. Chaos Solitons Fractals 102 (2017), 210–217.

    Article  MathSciNet  Google Scholar 

  50. T. Sandev and Z. Tomovski, Langevin equation for a free particle driven by power law type of noises. Phys. Lett. A 378 (2014), 1–9.

    Article  MathSciNet  Google Scholar 

  51. T. Sandev, Z. Tomovski and J.L.A. Dubbeldam, Generalized Langevin equation with a three parameter Mittag-Leffler noise. Physica A 390 (2011), 3627–3636.

    Article  Google Scholar 

  52. H. Scher and M. Lax, Stochastic transport in a disordered solid, I. Theory. Phys. Rev. B 7 (1973), Art. # 4491.

  53. H. Scher, G. Margolin, R. Metzler, J. Klafter and B. Berkowitz, The dynamical foundation of fractal stream chemistry: The origin of extremely long retention times. Geophys. Res. Lett. 29 (2002), Art. # 1061.

  54. H. Scher and E.W. Montroll, Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12 (1975), Art. # 2455.

  55. R. Schilling, R. Song and Z. Vondracek. Bernstein Functions. De Gruyter, Berlin (2010).

    MATH  Google Scholar 

  56. J.H.P. Schulz, E. Barkai, and R. Metzler, Aging renewal theory and application to random walks. Phys. Rev. X 4 (2014), Art. # 011028.

  57. Ya.G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27 (1982), 256–268.

    Article  Google Scholar 

  58. E. Soika, R. Mankin, and J. Priimets, Generalized Langevin equation with multiplicative trichotomous noise. Proc. Estonian Acad. Sci. 61 (2012), 113–127.

    Article  Google Scholar 

  59. I.M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion. Chaos 15 (2005), Art. # 26103.

  60. T.H. Solomon, E.R. Weeks and H.L. Swinney, Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 71 (1993), Art. # 3975.

  61. A. Stanislavsky and K. Weron, Atypical case of the dielectric relaxation responses and its fractional kinetic equation. Fract. Calc. Appl. Anal. 19, No 1 (2016) 212–228; DOi: 10.1515/fca-2016-0012; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  62. S.M.A. Tabei, S. Burov, H.Y. Kim, A. Kuznetsov, T. Huynh, J. Jureller, L.H. Philipson, A.R. Dinner and N.F. Scherer, Intracellular transport of insulin granules is a subordinated random walk. Proc. Natl. Acad. Sci. USA 110 (2013), 4911–4916.

    Article  Google Scholar 

  63. V.E. Tarasov, No violation of the Leibniz rule. No fractional derivative. Commun. Nonlin. Sci. Numer. Simul. 18 (2013), 2945–2948.

    Article  MathSciNet  Google Scholar 

  64. A.A. Tateishi, E.K. Lenzi, L.R. da Silva, H.V. Ribeiro, S. Picoli Jr. and R.S. Mendes, Different diffusive regimes, generalized Langevin and diffusion equations. Phys. Rev. E 85 (2012), Art. # 011147.

  65. A.D. Viñles and M.A. Despósito, Anomalous diffusion induced by a Mittag-Leffler correlated noise. Phys. Rev. E 75 (2007), Art. # 042102.

  66. A.D. Viñales, K.G. Wang, and M.A. Despósito, Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise. Phys. Rev. E 80 (2009), Art. # 011101.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trifce Sandev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandev, T., Metzler, R. & Chechkin, A. From continuous time random walks to the generalized diffusion equation. FCAA 21, 10–28 (2018). https://doi.org/10.1515/fca-2018-0002

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0002

MSC 2010

Key Words and Phrases

Navigation