Skip to main content
Log in

Atypical Case of the Dielectric Relaxation Responses and its Fractional Kinetic Equation

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We present a probabilistic model of the microscopic scenario of dielectric relaxation relating to the atypical case of two-power-law responses.The surveyed approach extends the cluster model concept used for the description of the typical, Havriliak-Negami (HN) law. Within the proposed framework, all empirical two-power-law relaxation patterns may be derived. Their relaxation functions are expressed in terms of the three-parameter Mittag-Leffler function, and the kinetic equation takes the pseudodifferential form generalizing the Riemann-Louiville fractional calculus. This provides a clue to explain the universality observed in relaxation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Ch. 13, Dover, New York 1965).

    MATH  Google Scholar 

  2. E. Capelas de Oliveira, F. Mainardi, J. Vaz Jr, Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. The European Physical Journal, Special Topics 193 (2011), 161–171.

    Article  Google Scholar 

  3. W. Chen, Y. Liang, S. Hu, H. Sun, Fractional derivative anomalous diffusion equation modeling prime number distribution. Fract. Calc. Appl. Anal. 18 (2015), 789–798. DOI: 10.1515/fca-2015-0047;http://www.degruyter.com/view/j/fca.2015.18.issue-3/issue files/fca.2015.18.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  4. W. Chen, X. Zhang, X. Cai, A study on modified Szabo’s wave equation modeling of frequency-dependent dissipation in ultrasonic medical imaging. Phys. Scr T. 136 (2009), #014014.

    Article  Google Scholar 

  5. R.L. Dobrushin., Lemma on the limit of a composite random function. Uspekhi Mat. Nauk 10 (1955), 157–159.(in Russian)

    Google Scholar 

  6. W. Feller, An Introduction to Probability Theory and its Applications. Vol. 2, John Wiley, New York (1966)

    MATH  Google Scholar 

  7. R. Garrappa, Numerical Evaluation of two and three parameter Mittag-Leffler functions. SIAM Journal of Numerical Analysis 53 (2015), 1350–1369.

    Article  MathSciNet  Google Scholar 

  8. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin., Mittag-Leffler Functions. Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  9. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: A. Carpinteri, F. Mainardi (Eds.),Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York (1997), 223–276.

    Chapter  Google Scholar 

  10. S. Havriliak, S.J. Havriliak., Results from an unbiased analysis of nearly 1000 sets of relaxation data. J. Non-Cryst. Solids 172-174 (1994), 297–310.

    Article  Google Scholar 

  11. N.L. Johnson., S. Kotz, Distributions in Statistics: Continuous UnivariateDistributions. Vols. 1,2, Wiley, New York (1970)

    Google Scholar 

  12. A.K. Jonscher., Dielectric Relaxation in Solids. Chelsea Dielectrics Press, London (1983)

    Google Scholar 

  13. A.K. Jonscher., Universal Relaxation Law. Chelsea Dielectrics Press, London (1996)

    Google Scholar 

  14. A. Jurlewicz, K. Weron, Infinitely divisible waiting-time distributions underlying the empirical relaxation responses. Acta Phys. Polon. B 31(2000), 1077–1084.

    Google Scholar 

  15. A. Jurlewicz, K. Weron, Relaxation of dynamically correlated clusters. J. Non-Cryst. Solids. 305 (2002), 112–121.

    Article  Google Scholar 

  16. A. Jurlewicz, Stochastic foundations of the universal dielectric response.Appl. Math. 30 (2003), 325–336.

    MathSciNet  MATH  Google Scholar 

  17. A. Jurlewicz, K. Weron, M. Teuerle, Generalized Mittag-Leffler relaxation: Clustering-jump continuous-time random walk approach. Phys.Rev.E 78 (2008), #011103

    Article  Google Scholar 

  18. F. Mainardi, R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. Journal of ComputationalPhysics 293 (2015), 70–80.

    Article  MathSciNet  Google Scholar 

  19. A.M. Mathai., H.J. Haubold., Special Functions for Applied Scientists. Springer, New York (2008)

    Book  Google Scholar 

  20. A.M. Mathai., R.K. Saxena., H.J. Haubold., The H-Function. Theory and Applications. Springer, Amsterdam (2009)

    MATH  Google Scholar 

  21. F. Polito, Z. Tomovski, Some properties of Prabhakar-type operators. E-print arXiv:1508.03224v2 [math.PR], 8 Sept. 2015, pp. 19

    Google Scholar 

  22. A.A. Stanislavsky., Probabilistic interpretation of the integral of fractional order. Theor. Math. Phys. 138 (2004), 418–431.

    Article  Google Scholar 

  23. A.A. Stanislavsky., K. Weron, J. Trzmiel, Subordination model of anomalous diffusion leading to the two-power-law relaxation responses. Europhys. Lett. 91 (2010), #40003

    Article  Google Scholar 

  24. A.A. Stanislavsky., K. Weron, Anomalous diffusion with under- and over-shooting subordination: A competition between the very large jumps in physical and operational times. Phys. Rev. E 82 (2010), #051120.

    Article  Google Scholar 

  25. A.A. Stanislavsky., K. Weron, Anomalous diffusion approach to dielectric spectroscopy data with independent low- and high-frequency exponents. Chaos, Solitons and Fractals 45 (2012), 909–913.

    Article  Google Scholar 

  26. A.A. Stanislavsky, K. Weron, Numerical scheme for calculating of the fractional two-power relaxation laws in time-domain of measurements. Comp. Phys. Communications 183 (2012), 320–323.

    Article  MathSciNet  Google Scholar 

  27. Z. Tomovski, T.K. Pogany, H.M. Srivastava., Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity. J.Franklin Inst. 351 (2014), 5437–5454.

    Article  MathSciNet  Google Scholar 

  28. J. Trzmiel, K. Weron, E. Placzek-Popko, Stretched-exponential photoionization of the metastable defects in gallium doped Cd0.99Mn0.01Te:Statistical origins of the short-time power-law in response data. J. Appl.Phys. 103 (2008), #114902.

    Article  Google Scholar 

  29. K. Weron, A probabilistic mechanism hidden behind the universal power law for dielectric relaxation: general relaxation equation. J.Phys.: Condens. Matter 3 (1991), 9151–9162.

    Google Scholar 

  30. K. Weron, A. Jurlewicz, Two forms of self-similarity as a fundamental feature of the power law dielectric response. J. Phys. A: Math. Gen. 26 (1993), 395–410.

    Article  MathSciNet  Google Scholar 

  31. K. Weron, A. Jurlewicz, A.K. Jonscher., Energy criterion in interacting cluster systems. IEEE Trans. Diel. &Electr. Insulation 8 (2001), 352–358.

    Article  Google Scholar 

  32. K. Weron, A. Jurlewicz, M. Magdziarz, A. Weron, J. Trzmiel, Overshooting and undershooting subordination scenario for fractional twopower-law relaxation responses. Phys. Rev. E 81 (2010), #041123.

    Article  Google Scholar 

  33. K. Weron, A.A. Stanislavsky., A. Jurlewicz, M.M. Meerschaert., H.-P. Scheffler, Clustered continuous time random walks: diffusion and relaxation consequences. Proc. R. Soc. A 468 (2012), 1615–1628.

    Article  MathSciNet  Google Scholar 

  34. V.M. Zolotariew., One-Dimensional Stable Distributions. American Mathematical Society, Providence (1986).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Stanislavsky.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanislavsky, A., Weron, K. Atypical Case of the Dielectric Relaxation Responses and its Fractional Kinetic Equation. FCAA 19, 212–228 (2016). https://doi.org/10.1515/fca-2016-0012

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0012

Key Words and Phrases

MSC

Navigation