Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 10, 2017

The variety of all commutative BCK-algebras is generated by its finite members as a quasivariety

  • Marek Pałasiński EMAIL logo
From the journal Demonstratio Mathematica

Abstract

We prove the result announced by the title as well as some of its consequences.

Keywords: BCK-algebra
MSC 2010: 03G25

References

[1] R. Balbes, Ph. Dwinger, Distributive lattices, University of Missouri Press, 1974.Search in Google Scholar

[2] W. J. Blok, I. Ferreirim, Hoops and their implicational reducts (abstract), algebraic methods in logic and in computer science, Banach Center Publ. 28 (1993), 219–230.10.4064/-28-1-219-230Search in Google Scholar

[3] W. Blok, I. Ferreirim, On the structure of hoops, Algebra Universalis 43 (2000), 233–257.10.1007/s000120050156Search in Google Scholar

[4] W. Blok, D. Pigozzi, On the structure of varieties with equationally definable principal congruences III, Algebra Universalis 32 (1994), 545–608.10.1007/BF01195727Search in Google Scholar

[5] W. J. Blok, J. G. Raftery, On the quasivariety of BCK-algebras and its subvarieties, Algebra Universalis 33 (1995), 68–90.10.1007/BF01190766Search in Google Scholar

[6] W. J. Blok, J. G. Raftery, Varieties of commutative residuated integral pomonoids and their residuation subreducts, J. Algebra 190 (1997), 280–328.10.1006/jabr.1996.6834Search in Google Scholar

[7] W. J. Blok, C. Van Alten, The finite embeddability property for residuated lattices, pocrims and BCK-algebras, Algebra Universalis 48 (2002), 253–271.10.1007/s000120200000Search in Google Scholar

[8] W. J. Blok, C. Van Alten, On the finite embeddability property for residuated ordered grupoids, Trans. Amer. Math. Soc. 357 (2005), 4141–4157.10.1090/S0002-9947-04-03654-2Search in Google Scholar

[9] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.10.1090/S0002-9947-1958-0094302-9Search in Google Scholar

[10] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74–80.Search in Google Scholar

[11] R. Cignoli, M. L. D’Ottaviano, D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Pub., Dordrecht, 2000.10.1007/978-94-015-9480-6Search in Google Scholar

[12] W. H. Cornish, T. Sturm, T. Traczyk, Embedding of commutative BCK-algebra into distributive lattice BCK-algebras, Math. Japon. 29 (1984), 309–320.Search in Google Scholar

[13] A. Di Nola, A. Lettieri, Equational characterization of all varieties of MV-algebras, J. Algebra 221 (1999), 463–474.10.1006/jabr.1999.7900Search in Google Scholar

[14] I. Ferreirim, On a conjecture by Andrzej Wroński for BCK-algebras and subreducts of hoops, Sci. Math. Jpn. 53 (2001), 119–132.Search in Google Scholar

[15] J. M. Font, A. J. Rodríguez, A. Torrens, Wajsberg algebras, Stochastica 8 (1984), 5–31.Search in Google Scholar

[16] J. Gispert, D. Mundici, MV-algebras: a variety for magnitudes with archimedean units, Algebra Universalis 53 (2005), 7–43.10.1007/s00012-005-1905-5Search in Google Scholar

[17] G. Grätzer, Universal Algebra, Van Nostrand, 1968.Search in Google Scholar

[18] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1–26.Search in Google Scholar

[19] K. Iséki, BCK-algebras with condition (S), Math. Japon. 24 (1979), 107–120.Search in Google Scholar

[20] Y. Komori, Super-Łukasiewicz implicational logics, Nagoya Math. J. 72 (1978), 127–133.10.1017/S0027763000018249Search in Google Scholar

[21] J. Łukasiewicz, A. Tarski, Untersuchungen uber den Aussagenkalkul, Comptes-rendus des seances de la Societe de Sciences et de Lettres de Varsovie, Cl. III, 23 (1930), 30–50.Search in Google Scholar

[22] D. Mundici, Bounded commutative BCK-algebras have the amalgamation property, Math. Japon. 32 (1987), 279–282.Search in Google Scholar

[23] D. Mundici, Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15–63.10.1016/0022-1236(86)90015-7Search in Google Scholar

[24] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon. 31 (1986), 889–894.Search in Google Scholar

[25] K. Pałasińska, Amalgamation property in some classes of BCK-algebras, Rep. Math. Logic 21 (1987), 73–84.Search in Google Scholar

[26] M. Pałasiński, Some remarks on BCK-algebras, Mathematics Seminar Notes, Kobe Univ. 8 (1980), 137–144.Search in Google Scholar

[27] M. Pałasiński, Representation theorem for commutative BCK-algebras, Mathematics Seminar Notes, Kobe Univ. 10 (1982), 473–478.Search in Google Scholar

[28] M. Pałasiński, On BCK-algebras with the operation (S), Polish Acad. Sci., Bull. of the Section of Logic 13 (1984), 13–20.Search in Google Scholar

[29] M. Pałasiński, A. Romanowska, Varieties of commutative BCK-algebras not generated by their finite members, Demonstratio Math. 18 (1985), 499–508.Search in Google Scholar

[30] A. Romanowska, T. Traczyk, On commutative BCK-algebras, Math. Japon. 25 (1980), 567–583.Search in Google Scholar

[31] A. Romanowska, T. Traczyk, On the structure of commutative BCK-chains, Math. Japon. 26 (1981), 433–442.Search in Google Scholar

[32] A. Romanowska, T. Traczyk, Commutative BCK-algebras. Subdirectly irreducible algebras and varieties, Math. Japon. 27 (1982), 35–48.Search in Google Scholar

[33] A. Romanowska, T. Traczyk, Simple commutative BCK-chains, Math. Japon. 29 (1984), 171–181.Search in Google Scholar

[34] W. Suchon, Definition des foncteurs modaux de Moisil dans le calcul n-valent des propositions de Łukasiewicz avec implication et négation, Rep. Math. Logic 2 (1974), 43–47.Search in Google Scholar

[35] S. Tanaka, On λ-commutative algebras, Mathematics Seminar Notes, Kobe Univ. 3 (1975), 59–64.Search in Google Scholar

[36] H. Yutani, An axiom system for a BCK-algebra with the condition (S), Mathematics Seminar Notes, Kobe Univ. 7 (1979), 427–432.Search in Google Scholar

[37] H. Yutani, Quasi-commutative BCK-algebras and congruence relations, Math. Seminar Notes, Kobe Univ. 5 (1977), 469–480.Search in Google Scholar

[38] A. Wroński, On varieties of commutative BCK-algebras not generated by their finite members, Math. Japon. 30 (1985), 227–233.Search in Google Scholar

[39] A. Wroński, An algebraic motivation for BCK-algebras, Math. Japon. 30 (1985), 187–193.Search in Google Scholar

Received: 2009-4-26
Revised: 2011-3-1
Published Online: 2017-5-10
Published in Print: 2012-9-1

© 2012 Marek Pałasiński, published by De Gruyter Open

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.5.2024 from https://www.degruyter.com/document/doi/10.1515/dema-2013-0386/html
Scroll to top button