Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 20, 2022

Improving the high temperature oxidation resistance of high entropy alloy by surface modification

  • Mayank Garg ORCID logo , Harpreet S. Grewal , Ram K. Sharma and Harpreet S. Arora EMAIL logo
From the journal Corrosion Reviews

Abstract

In the current study, we report an excellent high temperature oxidation resistance of AlCoCrFeNi high entropy alloy (HEA) following surface modification. The surface properties of HEA were tailored through a severe surface deformation technique. The as cast HEA exhibited coarse grain B2/BCC microstructure. In contrast, processed specimen showed significant grain refinement along with B2/BCC to FCC phase-transition. The processed specimen demonstrated 11–67% reduction in the oxidation kinetics. Cr2O3 and Al2O3 were the predominant oxides formed in all the oxidized specimens. In addition, Cr, Fe and Co rich spinels were also found in the as cast oxidized specimens. The superior oxidation resistance of the processed specimen is attributed to the microstructural refinement resulting in the formation of protective dense chromia layer.


Corresponding author: Harpreet S. Arora, Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India, E-mail:

  1. Author contributions: MG: investigation, formal analysis, data curation, original draft; writing; HSG: supervision, validation, writing–review & editing; RS: formal analysis, writing–review and editing; HSA: conceptualization, methodology, supervision, writing–review and editing.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adomako, N.K., Kim, J.H., and Hyun, Y.T. (2018). High-temperature oxidation behaviour of low-entropy alloy to medium-and high-entropy alloys. J. Therm. Anal. Calorim. 133: 13–26, https://doi.org/10.1007/s10973-018-6963-y.Search in Google Scholar

Bahramyan, M., Mousavian, R.T., and Brabazon, D. (2020). Study of the plastic deformation mechanism of TRIP–TWIP high entropy alloys at the atomic level. Int. J. Plast. 127: 102649, https://doi.org/10.1016/j.ijplas.2019.102649.Search in Google Scholar

Birks, N., Meier, G.H., and Pettit, F.S. (2006). Introduction to the high temperature oxidation of metals, 2nd ed. Cambridge University Press, Cambridge.10.1017/CBO9781139163903Search in Google Scholar

Butler, T., Alfano, J., Martens, R., and Weaver, M. (2015). High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys. J. Occup. Med. 67: 246–259, https://doi.org/10.1007/s11837-014-1185-7.Search in Google Scholar

Butler, T.M. and Weaver, M.L. (2016). Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd. 674: 229–244, https://doi.org/10.1016/j.jallcom.2016.02.257.Search in Google Scholar

Chang, C., Lee, C., and Huang, J. (2004). Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Mater. 51: 509–514, https://doi.org/10.1016/j.scriptamat.2004.05.043.Search in Google Scholar

Chen, J., Niu, P., Liu, Y., Lu, Y., Wang, X., Peng, Y., and Liu, J. (2016). Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater. Des. 94: 39–44, https://doi.org/10.1016/j.matdes.2016.01.033.Search in Google Scholar

Chen, Y., Zhao, X., and Xiao, P. (2018a). Effect of microstructure on early oxidation of MCrAlY coatings. Acta Mater. 159: 150–162, https://doi.org/10.1016/j.actamat.2018.08.018.Search in Google Scholar

Chen, L., Zhou, Z., Tan, Z., He, D., Bobzin, K., Zhao, L., Öte, M., and Königstein, T. (2018b). High temperature oxidation behavior of Al0. 6CrFeCoNi and Al0. 6CrFeCoNiSi0. 3 high entropy alloys. J. Alloys Compd. 764: 845–852, https://doi.org/10.1016/j.jallcom.2018.06.036.Search in Google Scholar

Chen, Y., Zhao, X., Dang, Y., Xiao, P., Curry, N., Markocsan, N., and Nylen, P. (2015). Characterization and understanding of residual stresses in a NiCoCrAlY bond coat for thermal barrier coating application. Acta Mater. 94: 1–14, https://doi.org/10.1016/j.actamat.2015.04.053.Search in Google Scholar

Chen, Y., Zhao, X., Bai, M., Yang, L., Li, C., Wang, L., Carr, J., and Xiao, P. (2017). A mechanistic understanding on rumpling of a NiCoCrAlY bond coat for thermal barrier coating applications. Acta Mater. 128: 31–42, https://doi.org/10.1016/j.actamat.2017.02.003.Search in Google Scholar

Dąbrowa, J., Cieślak, G., Stygar, M., Mroczka, K., Berent, K., Kulik, T., and Danielewski, M. (2017). Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x= 0; 0.5; 1). Intermetallics 84: 52–61.10.1016/j.intermet.2016.12.015Search in Google Scholar

Evans, A., He, M., and Hutchinson, J. (2001a). Mechanics-based scaling laws for the durability of thermal barrier coatings. Prog. Mater. Sci. 46: 249–271, https://doi.org/10.1016/s0079-6425(00)00007-4.Search in Google Scholar

Evans, A., Mumm, D., Hutchinson, J., Meier, G., and Pettit, F. (2001b). Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 46: 505–553, https://doi.org/10.1016/s0079-6425(00)00020-7.Search in Google Scholar

Evans, H. (2011). Oxidation failure of TBC systems: an assessment of mechanisms. Surf. Coat. Technol. 206: 1512–1521, https://doi.org/10.1016/j.surfcoat.2011.05.053.Search in Google Scholar

Gao, W., Li, Z., and He, Y. (2012). High temperature oxidation protection using nanocrystalline coatings. In: Saji, V. S. and Cook, R. (Eds.), Corrosion protection and control using nanomaterials. Woodhead Publishing, Sawston, pp. 146–166.10.1533/9780857095800.2.146Search in Google Scholar

Garg, M., Grewal, H., and Arora, H. (2021). Effect of microwave processing on the oxidation behavior of refractory high entropy alloy. Mater. Chem. Phys. 262: 124256, https://doi.org/10.1016/j.matchemphys.2021.124256.Search in Google Scholar

Garg, M., Grewal, H.S., Sharma, R.K., and Arora, H.S. (2022a). Enhanced oxidation resistance of ultrafine-grain microstructure AlCoCrFeNi high entropy alloy. ACS Omega 7: 12589–12600, https://doi.org/10.1021/acsomega.1c06014.Search in Google Scholar PubMed PubMed Central

Garg, M., Grewal, H.S., Sharma, R.K., Gwalani, B., and Arora, H.S. (2022b). High oxidation resistance of AlCoCrFeNi high entropy alloy through severe shear deformation processing. J. Alloys Compd. 914: 165385, https://doi.org/10.1016/j.jallcom.2022.165385.Search in Google Scholar

Gotawala, N., Wadighare, A., and Shrivastava, A. (2020). Phase transformation during friction stir processing of dual-phase 600 steel. J. Mater. Sci. 55: 4464–4477, https://doi.org/10.1007/s10853-019-04270-5.Search in Google Scholar

Hemphill, M.A., Yuan, T., Wang, G., Yeh, J., Tsai, C., Chuang, A., and Liaw, P. (2012). Fatigue behavior of Al0. 5CoCrCuFeNi high entropy alloys. Acta Mater. 60: 5723–5734, https://doi.org/10.1016/j.actamat.2012.06.046.Search in Google Scholar

Kai, W., Jang, W., Huang, R., Lee, C., Hsieh, H., and Du, C. (2005). Air oxidation of FeCoNi-base equi-molar alloys at 800–1000° C. Oxid. Metals 63: 169–192, https://doi.org/10.1007/s11085-004-3198-z.Search in Google Scholar

Karati, A., Guruvidyathri, K., Hariharan, V., and Murty, B. (2019). Thermal stability of AlCoFeMnNi high-entropy alloy. Scripta Mater. 162: 465–467, https://doi.org/10.1016/j.scriptamat.2018.12.017.Search in Google Scholar

Kofstad, P. (1957). Oxidation of metals: determination of activation energies. Nature 179: 1362–1363, https://doi.org/10.1038/1791362a0.Search in Google Scholar

Kumar, A., Thomas, A., Gupta, A., Garg, M., Singh, J., Perumal, G., Sujithkrishnan, E., Elumalai, P., and Arora, H.S. (2021). Facile synthesis of MnO2-Cu composite electrode for high performance supercapacitor. J. Energy Storage 42: 103100, https://doi.org/10.1016/j.est.2021.103100.Search in Google Scholar

Liu, J., Suslov, S., Li, S., Qin, H., Ren, Z., Ma, C., Wang, G.-X., Doll, G.L., Cong, H., and Dong, Y. (2017). Effects of ultrasonic nanocrystal surface modification on the thermal oxidation behavior of Ti6Al4V. Surf. Coat. Technol. 325: 289–298, https://doi.org/10.1016/j.surfcoat.2017.04.051.Search in Google Scholar

Lu, J., Chen, Y., Zhao, C., Zhang, H., Luo, L., Xu, B., Zhao, X., Guo, F., and Xiao, P. (2019). Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium. Corrosion Sci. 153: 178–190, https://doi.org/10.1016/j.corsci.2019.03.051.Search in Google Scholar

Lu, J., Chen, Y., Zhang, H., Li, L., Fu, L., Zhao, X., Guo, F., and Xiao, P. (2020a). Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy. Corrosion Sci. 170: 108691, https://doi.org/10.1016/j.corsci.2020.108691.Search in Google Scholar

Lu, J., Chen, Y., Zhang, H., Ni, N., Li, L., He, L., Mu, R., Zhao, X., and Guo, F. (2020b). Y/Hf-doped AlCoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance. Corrosion Sci. 166: 108426, https://doi.org/10.1016/j.corsci.2019.108426.Search in Google Scholar

Lu, J., Li, L., Chen, Y., Liu, X., Zhao, X., Guo, F., and Xiao, P. (2021). Y-Hf co-doped AlCoCrFeNi high-entropy alloy coating with superior oxidation and spallation resistance at 1100° C. Corrosion Sci. 182: 109267, https://doi.org/10.1016/j.corsci.2021.109267.Search in Google Scholar

Meetham, G.W. and Van de Voorde, M.H. (2000). Materials for high temperature engineering applications. Springer Science & Business Media, Berlin.10.1007/978-3-642-56938-8Search in Google Scholar

Muktinutalapati, N.R. (2011). Materials for gas turbines–an overview. J. Eng. Gas Turbines Power 23.Search in Google Scholar

Munitz, A., Salhov, S., Hayun, S., and Frage, N. (2016). Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloys Compd. 683: 221–230, https://doi.org/10.1016/j.jallcom.2016.05.034.Search in Google Scholar

Nguyen, T.Q., Sato, K., and Shibutani, Y. (2018). First-principles study of BCC/FCC phase transition promoted by interstitial carbon in iron. Mater. Trans. 59: 870–875, https://doi.org/10.2320/matertrans.m2018014.Search in Google Scholar

Ni, L.-y., Wu, Z.-l., and Zhou, C.-g. (2011). Effects of surface modification on isothermal oxidation behavior of HVOF-sprayed NiCrAlY coatings. Prog. Nat. Sci.: Mater. Int. 21: 173–179, https://doi.org/10.1016/s1002-0071(12)60052-5.Search in Google Scholar

Nong, Z.-S., Lei, Y.-N., and Zhu, J.-C. (2018). Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys. Intermetallics 101: 144–151, https://doi.org/10.1016/j.intermet.2018.07.017.Search in Google Scholar

Ojha, A. and Sehitoglu, H. (2016). Transformation stress modeling in new FeMnAlNi shape memory alloy. Int. J. Plast. 86: 93–111, https://doi.org/10.1016/j.ijplas.2016.08.003.Search in Google Scholar

Padture, N.P., Gell, M., and Jordan, E.H. (2002). Thermal barrier coatings for gas-turbine engine applications. Science 296: 280–284, https://doi.org/10.1126/science.1068609.Search in Google Scholar PubMed

Peng, X., Yan, J., Zhou, Y., and Wang, F. (2005). Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air. Acta Mater. 53: 5079–5088, https://doi.org/10.1016/j.actamat.2005.07.019.Search in Google Scholar

Ranjbar-Far, M., Absi, J., Mariaux, G., and Shahidi, S. (2010). Effect of residual stresses and prediction of possible failure mechanisms on thermal barrier coating system by finite element method. J. Therm. Spray Technol. 19: 1054–1061, https://doi.org/10.1007/s11666-010-9512-1.Search in Google Scholar

Shillington, E. and Clarke, D. (1999). Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat. Acta Mater. 47: 1297–1305, https://doi.org/10.1016/s1359-6454(98)00407-8.Search in Google Scholar

Shiratori, H., Fujieda, T., Yamanaka, K., Koizumi, Y., Kuwabara, K., Kato, T., and Chiba, A. (2016). Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting. Mater. Sci. Eng., A 656: 39–46, https://doi.org/10.1016/j.msea.2016.01.019.Search in Google Scholar

Shivam, V., Basu, J., Pandey, V.K., Shadangi, Y., and Mukhopadhyay, N. (2018). Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29: 2221–2230, https://doi.org/10.1016/j.apt.2018.06.006.Search in Google Scholar

Tzimas, E., Müllejans, H., Peteves, S., Bressers, J., and Stamm, W. (2000). Failure of thermal barrier coating systems under cyclic thermomechanical loading. Acta Mater. 48: 4699–4707, https://doi.org/10.1016/s1359-6454(00)00260-3.Search in Google Scholar

Wang, F., Zhang, Y., Chen, G., and Davies, H. (2009). Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Eng. Mater. Technol. 131, https://doi.org/10.1115/1.3120387.Search in Google Scholar

Wang, Y., Yang, Y., Yang, H., Zhang, M., Ma, S., and Qiao, J. (2018). Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys. 210: 233–239, https://doi.org/10.1016/j.matchemphys.2017.05.029.Search in Google Scholar

Wang, Y., Zhang, M., Jin, J., Gong, P., and Wang, X. (2020). Oxidation behavior of CoCrFeMnNi high entropy alloy after plastic deformation. Corrosion Sci. 163: 108285.10.1016/j.corsci.2019.108285Search in Google Scholar

Wang, Z., Qiu, W., Yang, Y., and Liu, C. (2015). Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics 64: 63–69, https://doi.org/10.1016/j.intermet.2015.04.014.Search in Google Scholar

Williams, J.C. and Starke, E.A.Jr (2003). Progress in structural materials for aerospace systems. Acta Mater. 51: 5775–5799, https://doi.org/10.1016/j.actamat.2003.08.023.Search in Google Scholar

Wu, Z., Bei, H., Pharr, G.M., and George, E.P. (2014). Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81: 428–441.10.1016/j.actamat.2014.08.026Search in Google Scholar

Zhang, T., Zhao, R., Wu, F., Lin, S., Jiang, S., Huang, Y., Chen, S., and Eckert, J. (2020). Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy. Mater. Sci. Eng., A 780: 139182, https://doi.org/10.1016/j.msea.2020.139182.Search in Google Scholar

Zhao, S., Xie, X., and Smith, G.D. (2004). The oxidation behavior of the new nickel-based superalloy Inconel 740 with and without Na2SO4 deposit. Surf. Coat. Technol. 185: 178–183, https://doi.org/10.1016/j.surfcoat.2003.12.003.Search in Google Scholar

Zhao, Y., Chen, H., Lu, Z., and Nieh, T. (2018). Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr) 94Ti2Al4 high-entropy alloy. Acta Mater. 147: 184–194, https://doi.org/10.1016/j.actamat.2018.01.049.Search in Google Scholar

Zhou, Y. and Hashida, T. (2002). Thermal fatigue failure induced by delamination in thermal barrier coating. Int. J. Fatig. 24: 407–417, https://doi.org/10.1016/s0142-1123(01)00096-2.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/corrrev-2022-0011).


Received: 2022-02-24
Accepted: 2022-06-22
Published Online: 2022-09-20
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.6.2024 from https://www.degruyter.com/document/doi/10.1515/corrrev-2022-0011/html
Scroll to top button