Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access June 22, 2017

A quantitative approach to weighted Carleson condition

  • Israel P. Rivera-Ríos EMAIL logo
From the journal Concrete Operators

Abstract

Quantitative versions of weighted estimates obtained by F. Ruiz and J.L. Torrea [30, 31] for the operator are obtained. As a consequence, some sufficient conditions for the boundedness of Min the two weight setting in the spirit of the results obtained by C. Pérez and E. Rela [26] and very recently by M. Lacey and S. Spencer [17] for the Hardy-Littlewood maximal operator are derived. As a byproduct some new quantitative estimates for the Poisson integral are obtained.

MSC 2010: 42B25

References

[1] Astala, K.; Iwaniec, T.; Saksman, E. Beltrami operators in the plane. Duke Math. J., 107(1) (2001), 27-56, 10.1215/S0012-7094-01-10713-8Search in Google Scholar

[2] Buckley, S. M. Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340(1993), 253-272, 10.1090/S0002-9947-1993-1124164-0Search in Google Scholar

[3] Carleson, L. Interpolation by bounded analytic functions and the corona problem, Annals of Math, 76 (1962), 547-559, 10.2307/1970375Search in Google Scholar

[4] Chung, D. ; Pereyra, M. C.; Pérez, C. Sharp bounds for general commutators on weighted Lebesgue spaces Trans. Amer. Math. Soc. V. 364, (2012), 1163-1177, 10.1090/S0002-9947-2011-05534-0Search in Google Scholar

[5] Conde-Alonso, J. M.; Rey, G. A pointwise estimate for positive dyadic shifts and some applications, Math. Annalen, 10.1007/s00208-015-1320-ySearch in Google Scholar

[6] Cruz-Uribe, D.; Martell, J. M.; Pérez, C. Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, 215. Birkhäuser/Springer Basel AG, Basel, 2011. xiv+280 pp. ISBN: 978-3-0348-0071-6, 10.1007/978-3-0348-0072-3Search in Google Scholar

[7] Cruz-Uribe, D.; Martell, J.M.; Pérez, C. Sharp weighted estimates for classical operators Advances in Mathematics, V. 229, (2012), 408-441, 10.1016/j.aim.2011.08.013Search in Google Scholar

[8] Fefferman, C.; Stein, E. M. Some maximal inequalities, Amer. J. Math, 93 (1971), 107-115, 10.2307/2373450Search in Google Scholar

[9] Fujii, N. Weighted bounded mean oscillation and singular integrals, Math. Japon. 22 (1977/78), no. 5, 529-534.Search in Google Scholar

[10] García-Cuerva, J.; Rubio de Francia, J. L. Weighted norm inequalities and related topics, North-Holland Mathematics Studies, 116. Notas de Matemática [Mathematical Notes], 104. North-Holland Publishing Co., Amsterdam, 1985. x+604 pp. ISBN: 0-444-87804-1Search in Google Scholar

[11] Hytönen, T. The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. (2), 175(3) (2012) 1473-1506, 10.4007/annals.2012.175.3.910.4007/annals.2012.175.3.9Search in Google Scholar

[12] Hytönen, T.; Li, K. Weak and strong Ap-A1 estimates for square functions and related operators (2015) available at http://arxiv.org/abs/1509.00273Search in Google Scholar

[13] Hytönen, T.; Pérez. C. Sharp weighted bounds involving A1, Analysis and PDE, 6 (2013), 777-818, 10.2140/apde.2013.6.777Search in Google Scholar

[14] Hytönen, T.; Pérez. C.; Rela, E. Sharp Reverse Hölder property for A1 weights on spaces of homogeneous type, Journal of Functional Analysis V. 263, (2012) 3883-3899, 10.1016/j.jfa.2012.09.013Search in Google Scholar

[15] Hytönen, T.; Roncal, L.; Tapiola, O. Quantitative weighted estimates for rough homogeneous singular integrals Israel J. Math. 218 (2017) , no. 1, 133 -164, 10.1007/s11856-017-1462-6Search in Google Scholar

[16] Lacey, M. T. An elementary proof of the A2 bound. Israel J. Math. 217 (2017), no. 1, 181 -195. 42 10.1007/s11856-017-1442-x10.1007/s11856-017-1442-xSearch in Google Scholar

[17] Lacey, M. T.; Spencer, S. On Entropy Bumps for Calderón-Zygmund Operators, Concr. Oper. 2 (2015), 47 -52, 10.1515/conop-2015-0003Search in Google Scholar

[18] Lerner, A. K. On an estimate of Calderón-Zygmund operators by dyadic positive operators. J. Anal. Math. 121 (2013), 141-161, 10.1007/s11854-013-0030-1Search in Google Scholar

[19] Lerner, A. K. A simple proof of the A2 conjecture. Int. Math. Res. Not. IMRN, 14(2013), 3159-3170, 10.1093/imrn/rns145Search in Google Scholar

[20] Lerner, A. K. On pointwise estimates involving sparse operators New York J. Math. (2016), 22 341 -349.Search in Google Scholar

[21] Lerner, A. K.; Nazarov, F. Intuitive dyadic calculus: the basics (2015) available at http://arxiv.org/abs/1508.05639Search in Google Scholar

[22] Muckenhoupt, B. Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc, 165 (1972), 115-121, 10.2307/1995882Search in Google Scholar

[23] Moen, K. Sharp one-weight and two-weight bounds for maximal operators. Studia Math. 194 (2009), no. 2, 163-180, 10.4064/sm194-2-4Search in Google Scholar

[24] Pérez, C. On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted Lp-spaces with different weights, Proc. London Math. Soc. 71 (1995), 135-157, 10.1112/plms/s3-71.1.135Search in Google Scholar

[25] Pérez, C. Weighted norm inequalities for singular integral operators, J. London Math. Soc. 49 (1994), 296-308.10.1112/jlms/49.2.29610.1112/jlms/49.2.296Search in Google Scholar

[26] Pérez, C.; Rela, E. A new quantitative two weight theorem for the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 143 (2015), no. 2, 641-655, 10.1090/S0002-9939-2014-12353-7Search in Google Scholar

[27] Petermichl, S. The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical Ap characteristic, Amer. J. Math. 129 (2007), 1355-1375, 10.1353/ajm.2007.0036Search in Google Scholar

[28] Petermichl, S. The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc. 136 (4) (2008), 1237-1249, 10.1215/S0012-9074-02-11223-X10.1090/S0002-9939-07-08934-4Search in Google Scholar

[29] Petermichl, S. and Volberg, A. Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), no. 2, 281-305, 10.1215/S0012-9074-02-11223-XSearch in Google Scholar

[30] Ruiz, F. J. A unified approach to Carleson measures and Ap weights, Pacific J. Math. 117 (1985), no. 2, 397-404, URL: http://projecteuclid.org/euclid.pjm/1102706791Search in Google Scholar

[31] Ruiz, F. J.; Torrea, J. L. A unified approach to Carleson measures and Ap weights II, Pacific J. Math. 120 (1985), no. 1, 189-197, URL: http://projecteuclid.org/euclid.pjm/1102703893Search in Google Scholar

[32] Sawyer, E. T. A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1-11.Search in Google Scholar

[33] Slavíková L., On the necessity of bump conditions for the two-weighted maximal inequality. Proc. Amer. Math. Soc. 145 (2017), no. 1, 109-118.Search in Google Scholar

[34] Treil, S.; Volberg, A. Alexander Entropy conditions in two weight inequalities for singular integral operators, Adv. Math. 301 (2016), 499-548. 10.1090/proc/1335510.1016/j.aim.2016.06.021Search in Google Scholar

[35] Wilson, J. M. Weighted inequalities for the dyadic square function without dyadic A1. Duke Math. J., 55 (1987), no. 1, 19-50, 0.1215/S0012-7094-87-05502-5Search in Google Scholar

Received: 2016-8-11
Accepted: 2017-6-7
Published Online: 2017-6-22
Published in Print: 2017-1-26

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/conop-2017-0006/html
Scroll to top button