Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access March 3, 2022

A surrogate Bayesian framework for a SARS-CoV-2 data driven stochastic model

  • M. Ganesh and S. C. Hawkins

Abstract

Dynamic compartmentalized data (DCD) and compartmentalized differential equations (CDEs) are key instruments for modeling transmission of pathogens such as the SARS-CoV-2 virus. We describe an effi-cient nowcasting algorithm for modeling transmission of SARS-CoV-2 with uncertainty quantification for the COVID-19 impact. A key concern for transmission of SARS-CoV-2 is under-reporting of cases, and this is addressed in our data-driven model by providing an estimate for the detection rate. Our novel top-down model is based on CDEs with stochastic constitutive parameters obtained from the DCD using Bayesian inference. We demonstrate the robustness of our algorithm for simulation studies using synthetic DCD, and nowcasting COVID-19 using real DCD from several regions across five continents.

MSC 2010: 65L09; 62F15; 92D30

References

[1] N. G. Becker and T. Britton. Statistical studies of infectious disease incidence. J. R. Statist. Soc. B, 61:287–307, 1999.10.1111/1467-9868.00177Search in Google Scholar

[2] M. A. Capistran, J. A. Christen, and J. X. Velasco-Hernandez. Towards uncertainty quantification and inference in the stochastic SIR epidemic model. Math. Biosci., 240:250–259, 2012.10.1016/j.mbs.2012.08.005Search in Google Scholar PubMed

[3] G. Chen and T. Li. Stability of stochastic delayed SIR model. Stoch. Dyn., 9:231–252, 2009.10.1142/S0219493709002658Search in Google Scholar

[4] B. Choi and G. A. Rempala. Inference for discretely observed stochatics kinetic networks with applications to epidemic modelling. Biostatistics, 13:153–165, 2012.10.1093/biostatistics/kxr019Search in Google Scholar PubMed PubMed Central

[5] D. Clancy and P. D. O’Neill. Bayesian estimation of the basic reproduction number in stochastic epidemic models. Bayesian Anal., 3:737–758, 2008.10.1214/08-BA328Search in Google Scholar

[6] A. N. Desai, M. U. G. Kraemer, S. Bhatia, A. Cori, P. Nouvellet, M. Herringer, E. L. Cohn, M. Carrion, J. S. Brownstein, L. C. Madoff, and B. Lassmann. Real-time epidemic forecasting: challenges and opportunities. Health Secur., 17:268–275, 2010.10.1089/hs.2019.0022Search in Google Scholar

[7] S. Funk, A. Camacho, A. J. Kucharski, R. M. Eggo, and W. J. Edmunds. Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model. Epidemics, 22:56–61, 2018.10.1016/j.epidem.2016.11.003Search in Google Scholar PubMed PubMed Central

[8] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data Anaylsis. Chapman and Hall, third edition, 2013.10.1201/b16018Search in Google Scholar

[9] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intelligence, 6:721–741, 1984.10.1109/TPAMI.1984.4767596Search in Google Scholar

[10] A. Gray, D. Greenhalgh, L. Hu, X. Mao, and J. Pan. A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math., 71:876–902, 2011.10.1137/10081856XSearch in Google Scholar

[11] W. Guan et al. Clinical characteristics of Coronavirus Disease 2019 in China. N. Eng. J. Med., 382:1708–1720, 2020.Search in Google Scholar

[12] M. Jornet-Sanz, A. Corberan-Vallet, F. J. Santonja, and R. J. Villanueva. A Bayesian stochastic SIRS model with a vaccination strategy for the analysis of respiratory syncytial virus. SORT, 41:159–176, 2017.Search in Google Scholar

[13] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proc. R. Soc. A, 115:700–721, 1927.10.1098/rspa.1927.0118Search in Google Scholar

[14] Y. N. Kyrychko and K. B. Blyuss. Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Anal. Real World Appl., 6:495–507, 2005.10.1016/j.nonrwa.2004.10.001Search in Google Scholar

[15] M. Li and X. Liu. An SIR epidemic model with time delay and general nonlinear incidence rate. Abstr. Appl. Anal., 2014:131257:1–131257:7, 2014.10.1155/2014/131257Search in Google Scholar

[16] M. Lipsitch, L. Finelli, R. T. Heffernan, G. M. Leung, and S. C. Redd. Improving the evidence base for decision making during a pandemic: the example of 2009 Influenza A/H1N1. Biosecur. Bioterror, 9:89–115, 2022.Search in Google Scholar

[17] Q. Lu. Stability of SIRS system with random perturbations. Physica A, 388:3677–3686, 2009.10.1016/j.physa.2009.05.036Search in Google Scholar

[18] H. El Maroufy, T. Kernane, S. Becheket, and A. Ouddadj. Bayesian inference for nonlinear stochastic SIR epidemic model. J. Stat. Comput. Simul., 86:2229–2240, 2016.10.1080/00949655.2015.1107561Search in Google Scholar

[19] R. Moss, J. Wood, D. Brown, F. Shearer, A. J. Black, A. C. Cheng, J. M. McCaw, and J. McVernon. Modelling the impact of COVID-19 in Australia to inform transmission reducing measures and health system preparedness. Technical report, The University of Melbourne, 2020.10.1101/2020.04.07.20056184Search in Google Scholar

[20] P. J. Neal and G. O. Roberts. Statistical inference and model selection for the 1861 Hagelloch measles epidemic. Biostatistics, 5:249–261, 2004.10.1093/biostatistics/5.2.249Search in Google Scholar PubMed

[21] P. D. O’Neill and G. O. Roberts. Bayesian inference for partially observed stochastic epidemics. J. R. Statist. Soc. A, 1:121–129, 1999.10.1111/1467-985X.00125Search in Google Scholar

[22] K. Prem, Y. Liu, T. W. Russel, A. J. Kucharski, N. Davies, M. Jit, and P. Klepac. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health, 2020.10.1101/2020.03.09.20033050Search in Google Scholar

[23] A. Qaffou, H. El Maroufy, and T. Kernane. Bayesian parameter inference for stochastic SIR epidemic model with hyperbolic diffusion. Commun. Stat. - Simul. Comput., 46:6907–6922, 2017.10.1080/03610918.2016.1217013Search in Google Scholar

[24] H. Rahmandad, T. Y. Lim, and J. Sterman. Estimating the global spread of COVID-19. Technical report, MIT, 2020.10.2139/ssrn.3635047Search in Google Scholar

[25] D. D. Rajgor, M. H. Lee, S. Archuleta, N. Bagdasarian, and S. C. Quek. The many estimates of the COVID-19 case fatality rate. Lancet Infect. Dis., 2020.10.1016/S1473-3099(20)30244-9Search in Google Scholar PubMed PubMed Central

[26] B. Ridenhour, J.M. Kowalik, and D.K. Shay. Unraveling R0: considerations for public health applications. Am. J. Public Health, 104(2):e32–e41, 2014.10.2105/AJPH.2013.301704Search in Google Scholar

[27] E. Tornatore, S. M. Buccellato, and P. Vetro. Stability of a stochastic SIR system. Physica, 354:111–126, 2005.10.1016/j.physa.2005.02.057Search in Google Scholar

[28] N. Wilson, L. T. Barnard, A. Kvalsvig, and M. Baker. Potential health impacts from the COVID-19 pandemic for New Zealand if eradication fails: report to the NZ Ministry of Health. Technical report, University of Otago, 2020.Search in Google Scholar

[29] http://www.worldometers.info/coronavirus.Search in Google Scholar

[30] J. T. Wu, K. Leung, and G. M. Leung. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet, 395:689–697, 2020.10.1016/S0140-6736(20)30260-9Search in Google Scholar

Received: 2021-08-31
Accepted: 2022-01-17
Published Online: 2022-03-03

© 2022 M. Ganesh et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.1515/cmb-2022-0131/html
Scroll to top button