Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 3, 2015

Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites

  • Davood Habibi EMAIL logo , Atefeh Shamsian and Davood Nematollahi
From the journal Chemical Papers

Abstract

An efficient ionic liquid with both Brønsted acidic and Lewis basic sites, namely 1,4-dimethyl-1- (4-sulphobutyl)piperazinium hydrogen sulphate (IL1), was synthesised and characterised. IL1 is a “green”, homogeneous and reusable catalyst for: i) the synthesis of pyranopyrazoles (Va-Vj) and benzopyrans (VIa-VIj and VIIa-VIIf) at ambient temperature under solvent-free conditions and ii) the synthesis of amino-2-chromenes (VIIIa-VIIIi and IXa-IXi) and dihyropyrano[c]chromenes (Xa- Xi) at 80◦C under solvent-free conditions. The reactions were rapid with excellent product yields. In addition, the double Brønsted acid, 1,4-dimethyl-1,4-bis(4-sulphobutyl)piperazinium hydrogen sulphate (IL2), was prepared to evaluate the cooperation efficiency of their Brønsted acidic and Lewis basic sites as compared with the double Brønsted acidic sites in IL1

References

Bold, G., Caravatti, G., Floersheimer, A., Guagnano, V., Imbach, P., Masuya, K., Roesel, J., Vaupel, A., & Garcia- Echeverria, C. (2005). U.S. patent WO 2005051366A2. Washington, D.C., USA: US Patent and Trademark Office.Search in Google Scholar

Chupak, L. S., Kaneko, T., Josyula, V. P. V. N., & Jiao, W. (2004). U.S. patent WO 2004069245A1. Washington, D.C., USA: US Patent and Trademark Office.Search in Google Scholar

Chakrabartty, S. K., & Kretschmer, H. O. (1974). Sodium hypochlorite as a selective oxidant for organic compounds. Journal of the Chemical Society, Perkin Transactions 1, 1974, 222-228. DOI: 10.1039/p19740000222.Search in Google Scholar

Gerspacher, M., Furet, P., Pissot-Soldermann, C., Gaul, C., Holzer, P., Vangrevelinghe, E., Lang, M., Erdmann, D., Radimerski, T., Regnier, C. H., Chene, P., De Pover, A., Hofmann, F., Baffert, F., Buhl, T., Aichholz, R., Blasco, F., Endres, R., Trappe, J., & Drueckes, P. (2010). 2-Amino-aryl-7-aryl-benzoxazoles as potent, selective and orally available JAK2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 20, 1724-1727. DOI: 10.1016/j.bmcl.2010.01.069.Search in Google Scholar

Huntress, E. H., Shloss, E. L., Jr., & Ehrlich, P. (1936). 4- Nitrophthalic acid. Organic Syntheses, 16, 56. DOI: 10.15227 /orgsyn.016.0056.Search in Google Scholar

Yavari, I., & Karimi, E. (2009). N-Hydroxyphthalimide-catalyzed oxidative production of phthalic acid from xylenes using O2/HNO3 in an ionic liquid. Synthetic Communications, 39, 3420-3427. DOI: 10.1080/00397910902770461.Search in Google Scholar

Ishii, Y., Nakayama, K., Takeno, M., Sakaguchi, S., Iwahama, T., & Nishiyama, Y. (1995). Novel catalysis of Nhydroxyphthalimide in the oxidation of organic substrates by molecular oxygen. Journal of Organic Chemistry, 60, 3934-3935. DOI: 10.1021/jo00118a002.Search in Google Scholar

Liu, G. Y., Tang, R. R., & Wan, Z. (2014). Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide. Catalysis Letters, 144, 717-722. DOI: 10.1007/s10562-014-1200-1.Search in Google Scholar

Mahindroo, N., Punchihewa, C., Bail, A. M., & Fujii, N. (2008).Search in Google Scholar

Indole-2-amide based biochemical antagonist of Dishevelled PDZ domain interaction down-regulates Dishevelled-driven Tcf transcriptional activity. Bioorganic & Medicinal Chemistry Letters, 18, 946-949. DOI: 10.1016/j.bmcl.2007.12.039.Search in Google Scholar

Recupero, F., & Punta, C. (2007). Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide.Search in Google Scholar

Chemical Reviews, 107, 3800-3842. DOI: 10.1021/cr040170k.Search in Google Scholar

Sawatari, N., Sakaguchi, S., & Ishii, Y. (2003). Oxidation of nitrotoluenes with air using N-hydroxyphthalimide analogues as key catalysts. Tetrahedron Letters, 44, 2053-2056. DOI: 10.1016/s0040-4039(03)00212-0.Search in Google Scholar

Sasson, Y., Zappi, D. G., & Neumann, R. (1986). Liquidphase oxidation of deactivated methylbenzenes by aqueous sodium hypochlorite catalyzed by ruthenium salts under phase-transfer catalytic conditions. Journal of Organic Chemistry, 51, 2880-2883. DOI: 10.1021/jo00365a005.Search in Google Scholar

Taha, N., Chidambaram, M., Dakka, J., & Sasson, Y. (2009).Search in Google Scholar

Co(II) catalyzed solvent free auto-oxidation of methylbenzenes to substituted benzoic acids under phase transfer conditions.Search in Google Scholar

Catalysis Letters, 129, 358-362. DOI: 10.1007/s10562-009-9874-5.Search in Google Scholar

Taha, N., & Sasson, Y. (2010). Superior performance of NHPI co-catalyst in the autoxidation of methylbenzenes under solvent-free phase transfer conditions. Organic Process Research & Development, 14, 701-704. DOI: 10.1021/op100 027s.Search in Google Scholar

Tashiro, Y., Iwahama, T., Sakaguchi, S., & Ishii, Y. (2001). A new strategy for the preparation of terephthalic acid by the aerobic oxidation of p-xylene using N-hydroxyphthalimide as a catalyst. Advanced Synthesis & Catalysis, 343, 220-225.Search in Google Scholar

DOI: 10.1002/1615-4169(20010226)343:2<220::AIDADSC220>Search in Google Scholar

3.0.CO;2-N.Search in Google Scholar

Tsantrizos, Y. S., Chabot, C., Beaulieu, P., Brochu, C., Poirier, M., Stammers, T. A., Thavonekham, B., & Rancourt, J. (2005). U.S. patent WO 2005080388A1. Washington, D.C., USA: US Patent and Trademark Office.Search in Google Scholar

Zahalka, A. H., & Sasson, Y. (1984). Deactivation of anion phase transfer catalysis by hydrogen bonding extraction acidic compounds. Journal of the Chemical Society, Chemical Communications, 1984, 1581-1582. DOI: 10.1039/c39840001581.Search in Google Scholar

Zhang, X., Zhou, X. L., Kisliuk, R. L., Piraino, J., Cody, V., & Gangjee, A. (2011). Design, synthesis, biological evaluation and X-ray crystal structure of novel classical 6,5,6-tricyclic benzo[4,5]thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors.Search in Google Scholar

Bioorganic & Medicinal Chemistry, 19, 3585-3594. DOI: 10.1016/j.bmc.2011.03.067. Search in Google Scholar

Received: 2014-4-1
Revised: 2014-8-15
Accepted: 2014-8-21
Published Online: 2015-3-3
Published in Print: 2015-4-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0066/html
Scroll to top button