Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 12, 2014

Promoting effect of group VI metals on Ni/MgO for catalytic growth of carbon nanotubes by ethylene chemical vapour deposition

  • Ahmed E. Awadallah EMAIL logo
From the journal Chemical Papers

Abstract

The incorporation of 1 mass % of group VI metals (chromium, molybdenum, and tungsten) into 4 mass % of Ni/MgO catalysts was evaluated for the synthesis of carbon nanotubes (CNTs) by the catalytic chemical vapour deposition of ethylene. All materials were characterised by XRD, surface area, TEM, SEM, Raman spectroscopy, and TGA-DTA. The resulting data demonstrated that the addition of group VI metals improved the surface area and metal dispersion, thereby achieving a remarkable enhancement in catalytic growth activity. Among the metals of group VI, Mo was found to be the most effective promoter for catalysing the CNTs’ growth. From TEM observation, long CNTs with a higher degree of graphitization were obtained on the Ni-Mo/MgO catalyst. TGA and DTA analysis showed that the as-grown CNTs over both Ni-Mo and Ni-W/MgO catalysts exhibited higher thermal stability.

References

Aboul-Gheit, A. K., Awadallah, A. E., El-Kossy, S. M., & Mahmoud, A. L. H. (2008). Effect of Pd or Ir on the catalytic performance of Mo/H-ZSM-5 during the non-oxidative conversion of natural gas to petrochemicals. Journal of Natural Gas Chemistry, 17, 337-343. DOI: 10.1016/s1003-9953(09)60005-0.10.1016/S1003-9953(09)60005-0Search in Google Scholar

Aboul-Gheit, A. K., & Awadallah, A. E. (2009). Effect of combining the metals of group VI supported on H-ZSM-5 zeolite as catalysts for non-oxidative conversion of natural gas to petrochemicals. Journal of Natural Gas Chemistry, 18, 71-77. DOI: 10.1016/s1003-9953(08)60080-8.10.1016/S1003-9953(08)60080-8Search in Google Scholar

Aboul-Gheit, A. K., Awadallah, A. E., Aboul-Enein, A. A., & Mahmoud, A. L. H. (2011). Molybdenum substitution by copper or zinc in H-ZSM-5 zeolite for catalyzing the direct conversion of natural gas to petrochemicals under non-oxidative conditions. Fuel, 90, 3040-3046. DOI: 10.1016/j.fuel.2011.05.010.10.1016/j.fuel.2011.05.010Search in Google Scholar

Aboul-Gheit, A. K., El-Masry, M. S., & Awadallah, A. E. (2012). Oxygen free conversion of natural gas to useful hydrocarbons and hydrogen over monometallic Mo and bimetallic Mo-Fe, Mo-Co or Mo-Ni/HZSM-5 catalysts prepared by mechanical mixing. Fuel Processing Technology, 102, 24-29. DOI: 10.1016/j.fuproc.2012.04.017.10.1016/j.fuproc.2012.04.017Search in Google Scholar

Ago, H., Uehara, N., Yoshihara, N., Tsuji, M., Yumura, M., Tomonaga, N., & Setoguchi, T. (2006). Gas analysis of the CVD process for high yield growth of carbon nanotubes over metal-supported catalysts. Carbon, 44, 2912-2918. DOI: 10.1016/j.carbon.2006.05.049.10.1016/j.carbon.2006.05.049Search in Google Scholar

Andersen, S. M., Borghei, M., Lund, P., Elina, Y. R., Pasanen, A., Kauppinen, E., Ruiz, V., Kauranen, P., & Skou, E. M. (2013). Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells. Solid State Ionics, 231, 94-101. DOI: 10.1016/j.ssi.2012.11.020.10.1016/j.ssi.2012.11.020Search in Google Scholar

Ashok, J., Kumar, S. N., Venugopal, A., Kumari, V. D., & Subrahmanyam, M. (2007). COx-free H2 production via catalytic decomposition of CH4 over Ni supported on zeolite catalysts. Journal of Power Sources, 164, 809-814. DOI: 10.1016/j.jpowsour.2006.11.029.10.1016/j.jpowsour.2006.11.029Search in Google Scholar

Awadallah, A. E., Aboul-Enein, A. A., & Aboul-Gheit, A. K. (2014). Effect of progressive Co loading on commercial Co-Mo/Al2O3 catalyst for natural gas decomposition to COx-free hydrogen production and carbon nanotubes. Energy Conversion and Management, 77, 143-151. DOI: 10.1016/j.enconman.2013.09.017.10.1016/j.enconman.2013.09.017Search in Google Scholar

Cassell, A. M., Raymakers, J. A., Kong, J., & Dai, H. J. (1999). Large scale CVD synthesis of single-walled carbon nanotubes. The Journal of Physical Chemistry B, 103, 6484-6492. DOI: 10.1021/jp990957s.10.1021/jp990957sSearch in Google Scholar

Chai, S. P., Zein, S. H. S., & Mohamed, A. R. (2006). Preparation of carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of methane. Chemical Physics Letter, 426, 345-350. DOI: 10.1016/j.cplett.2006.05.026.10.1016/j.cplett.2006.05.026Search in Google Scholar

Chen, M. H., Huang, Z. C., Wu, G. T., Zhu, G. M., You, J. K., & Lin, Z. G. (2003). Synthesis and characterization of SnO- carbon nanotube composite as anode material for lithiumion batteries. Materials Research Bulletin, 38, 831-836. DOI: 10.1016/s0025-5408(03)00063-1.10.1016/S0025-5408(03)00063-1Search in Google Scholar

Chen, C. M., Dai, Y. M., Huang, J. G., & Jehng, J. M. (2006). Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon, 44, 1808-1820. DOI: 10.1016/j.carbon.2005.12.043.10.1016/j.carbon.2005.12.043Search in Google Scholar

Chen, L., Liu, H. T., Yang, K., Wang, J. K., & Wang, X. L. (2009). Catalytic synthesis of carbon nanotubes from the decomposition of methane over a Ni-Co/La2O3 catalyst. Canadian Journal of Chemistry, 87, 47-53. DOI: 10.1139/v08-077. 10.1139/v08-077Search in Google Scholar

de Lucas, A., Garrido, A., Sánchez, P., Romero, A., & Valverde, J. L. (2005). Growth of carbon nanofibers from Ni/Y zeolite based catalysts: Effects of Ni introduction method, reaction temperature, and reaction gas composition. Industrial & Engineering Chemistry Research, 44, 8225-8236. DOI: 10.1021/ie058027k.10.1021/ie058027kSearch in Google Scholar

Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G., & Saito, R. (2002). Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40, 2043-2061. DOI: 10.1016/s0008-6223(02)00066-0.10.1016/S0008-6223(02)00066-0Search in Google Scholar

Dupuis, A. C. (2005). The catalyst in the CCVD of carbon nanotubes-a review. Progress in Materials Science, 50, 929-961. DOI: 10.1016/j.pmatsci.2005.04.003.10.1016/j.pmatsci.2005.04.003Search in Google Scholar

Fan, S. S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., & Dai, H. J. (1999). Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512-514. DOI: 10.1126/science.283.5401.512.10.1126/science.283.5401.512Search in Google Scholar

Flahaut, E., Peigney, A., Bacsa, W. S., Bacsa, R. R., & Laurent. Ch. (2004). CCVD synthesis of carbon nanotubes from (Mh,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum. Journal of Materials Chemistry, 14, 646-653. DOI: 10.1039/b312367g.10.1039/b312367gSearch in Google Scholar

Fujiwara, A., Ishii, K., Suematsu, H., Kataura, H., Maniwa, Y., Suzuki, S., & Achiba, Y. (2001). Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chemical Physics Letter, 336, 205-211. DOI: 10.1016/s0009-2614(01)00111-7.10.1016/S0009-2614(01)00111-7Search in Google Scholar

Harutyunyan, A. R., Pradhan, B. K., Kim, U. J., Chen, G. G., & Eklund, P. C. (2002). CVD synthesis of single wall carbon nanotubes under “soft” conditions. Nano Letters, 2, 525-530. DOI: 10.1021/nl0255101.10.1021/nl0255101Search in Google Scholar

Herrera, J. E., & Resasco, D. E. (2003). Role of Co-W interaction in the selective growth of single-walled carbon nanotubes from CO disproportionation. The Journal of Physical Chemistry B, 107, 3738-3746. DOI: 10.1021/jp027602k.10.1021/jp027602kSearch in Google Scholar

Jehng, J. M., Tung, W. C., & Kuo, C. H. (2008). The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. Journal of Porous Materials, 15, 43-51. DOI: 10.1007/s10934-006-9050-x.10.1007/s10934-006-9050-xSearch in Google Scholar

Kitiyanan, B., Alvarez, W. E., Harwell, J. H., & Resasco, D. E. (2000). Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co- Mo catalysts. Chemical Physics Letter, 317, 497-503. DOI: 10.1016/s0009-2614(99)01379-2.10.1016/S0009-2614(99)01379-2Search in Google Scholar

Landois, P., Peigney, A., Laurent, Ch., Frin, L., Datas, L., & Flahaut, E. (2009). CCVD synthesis of carbon nanotubes with W/Co-MgO catalysts. Carbon, 47, 789-794. DOI: 10.1016/j.carbon.2008.11.018.10.1016/j.carbon.2008.11.018Search in Google Scholar

Lee, C. J., Park, J. H., Kim, J. M., Huh, Y., Lee, J. Y., & No, K. S. (2000). Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst. Chemical Physics Letter, 327, 277-283. DOI: 10.1016/s0009-2614(00)00877-0.10.1016/S0009-2614(00)00877-0Search in Google Scholar

Li, Y., Zhang, B. C., Tang, X. L., Xu, Y. D., & Shen, W. J. (2006). Hydrogen production from methane decomposition over Ni/CeO2 catalysts. Catalysis Communications, 7, 380-386. DOI: 10.1016/j.catcom.2005.12.002.10.1016/j.catcom.2005.12.002Search in Google Scholar

Li, Y. D., Li, D. X., & Wang, G. W. (2011). Methane decomposition to COx-free hydrogen and nano-carbon material on group 8-10 base metal catalysts: A review. Catalysis Today, 162, 1-48. DOI: 10.1016/j.cattod.2010.12.042.10.1016/j.cattod.2010.12.042Search in Google Scholar

Loebick, C. Z., Derrouiche, S., Fang, F., Li, N., Haller, G. L., & Pfefferle, L. D. (2009). Effect of chromium addition to the Co-MCM-41 catalyst in the synthesis of single wall carbon nanotubes. Applied Catalysis A: General, 368, 40-49. DOI: 10.1016/j.apcata.2009.08.004.10.1016/j.apcata.2009.08.004Search in Google Scholar

Loebick, C. Z., Lee, S. C., Derrouiche, S., Schwab, M., Chen, Y., Haller, G. L., & Pfefferle, L. (2010). A novel synthesis route for bimetallic CoCr-MCM-41 catalysts with higher metal loadings. Their application in the high yield, selective synthesis of Single-Wall Carbon Nanotubes. Journal of Catalysis, 271, 358-369. DOI: 10.1016/j.jcat.2010.02.021.10.1016/j.jcat.2010.02.021Search in Google Scholar

Ni, L., Kuroda, K., Zhou, L. P., Kizuka, T., Ohta, K., Matsuishi, K., & Nakamura, J. (2006). Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts. Carbon, 44, 2265-2272. DOI: 10.1016/j.carbon.2006.02.031.10.1016/j.carbon.2006.02.031Search in Google Scholar

Pasha, M. A., Shafiekhani, A., & Vesaghi, M. A. (2009). Hot filament CVD of Fe-Cr catalyst for thermal CVD carbon nanotube growth from liquid petroleum gas. Applied Surface Science, 256, 1365-1371. DOI: 10.1016/j.apsusc.2009.08.090.10.1016/j.apsusc.2009.08.090Search in Google Scholar

Pour, A. N., Zamani Kheirolah, Y., Jozani, J., & Mehr, J. Y. (2005). The influence of La2O3 and TiO2 on NiO/MgO/α- Al2O3. Reaction Kinetics and Catalysis Letters, 86, 157-162. DOI: 10.1007/s11144-005-0307-1.10.1007/s11144-005-0307-1Search in Google Scholar

Sinnott, S. B., Andrews, R., Qian, D., Rao, A. M., Mao, Z., Dickey, E. C., & Derbyshire, F. (1999). Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letter, 315, 25-30. DOI: 10.1016/s0009-2614(99)01216-6.10.1016/S0009-2614(99)01216-6Search in Google Scholar

Song, C. S., & Pan, W. (2004). Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catalysis Today, 98, 463-484. DOI: 10.1016/j.cattod.2004.09.054.10.1016/j.cattod.2004.09.054Search in Google Scholar

Takenaka, S., Kobayashi, S., Ogihara, H., & Otsuka, K. (2003). Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber. Journal of Catalysis, 217, 79-87. DOI: 10.1016/s0021-9517(02)00185-9.10.1016/S0021-9517(02)00185-9Search in Google Scholar

Tang, S., Zhong, Z., Xiong, Z., Sun, L., Liu, L., Lin, J., Shen, Z. X., & Tan, K. L. (2001). Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chemical Physics Letters, 350, 19-26. DOI: 10.1016/s0009-2614(01)01183-6.10.1016/S0009-2614(01)01183-6Search in Google Scholar

Tans, S. J., Verschueren, A. R. M., & Dekker, C. (1998). Roomtemperature transistor based on a single carbon nanotube. Nature, 393, 49-52. DOI: 10.1038/29954.10.1038/29954Search in Google Scholar

Tauster, S. T., Fung, S. C., Baker, R. T. K., & Horsley, J. A. (1981). Strong interactions in supported-metal catalysts. Science, 211, 1121-1125. DOI: 10.1126/science.211.4487.112110.1126/science.211.4487.1121Search in Google Scholar PubMed

Tauster, S. J. (1987). Strong metal-support interactions. Accounts of Chemical Research, 20, 389-394. DOI: 10.1021/ ar00143a001.10.1021/ar00143a001Search in Google Scholar

Toebes, M. L., Zhang, Y. H., Hájek, J., Nijhuis, T. A., Bitter, J. H., van Dillen, A. J., Murzin, D. Yu., Koningsberger, D. C., & de Jong, K. P. (2004). Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: characterization and catalysis. Journal of Catalysis, 226, 215-225. DOI: 10.1016/j.jcat.2004.05.026.10.1016/j.jcat.2004.05.026Search in Google Scholar

Wang, L. S., Tao, L. X., Xie, M. S., Xu, G. F., Huang, J. S., & Xu, Y. D. (1993). Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catalysis Letters, 21, 35-41. DOI: 10.1007/bf00767368.10.1007/BF00767368Search in Google Scholar

Willems, I., Kónya, Z., Fonseca, A., & Nagy, J. B. (2002). Heterogeneous catalytic production and mechanical resistance of nanotubes prepared on magnesium oxide supported Cobased catalysts. Applied Catalysis A: General, 229, 229-233. DOI: 10.1016/s0926-860x(02)00030-3.10.1016/S0926-860X(02)00030-3Search in Google Scholar

Yeoh, W. M., Lee, K. Y., Chai, S. P., Lee, K. T., & Mohamed, A. R. (2010). The role of molybdenum in Co- Mo/MgO for large-scale production of high quality carbon nanotubes. Journal of Alloys and Compounds, 493, 539-543. DOI: 10.1016/j.jallcom.2009.12.151.10.1016/j.jallcom.2009.12.151Search in Google Scholar

Yoshida, A., Kaburagi, Y., & Hishiyama, Y. (2006). Full width at half maximum intensity of the G band in the first order Raman spectrum of carbon material as a parameter for graphitization. Carbon, 44, 2333-2335. DOI: 10.1016/j.carbon.2006.05.020.10.1016/j.carbon.2006.05.020Search in Google Scholar

Zheng, G. B., Kouda, K., Sano, H., Uchiyama, Y., Shi, Y. F., & Quan, H. J. (2004). A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon, 42, 635-640. DOI: 10.1016/j.carbon.2003.12.077.10.1016/j.carbon.2003.12.077Search in Google Scholar

Zhou, L. P., Ohta, K., Kuroda, K., Lei, N., Matsuishi, K., Gao, L. Z., Matsumoto, T., & Nakamura, J. (2005). Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes. The Journal of Physical Chemistry B, 109, 4439-4447. DOI: 10.1021/jp045284e.10.1021/jp045284eSearch in Google Scholar PubMed

Zhou, W. W., Han, Z. Y., Wang, J. Y., Zhang, Y., Jin, Z., Sun, X., Zhang, Y. W., Yan, C. H., & Li, Y. (2006). Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Letters, 6, 2987-2990. DOI: 10.1021/nl061871v. 10.1021/nl061871vSearch in Google Scholar PubMed

Received: 2013-11-20
Revised: 2014-5-21
Accepted: 2014-5-21
Published Online: 2014-12-12
Published in Print: 2015-2-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 10.6.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0029/html
Scroll to top button