Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 19, 2015

Laser microsampling and multivariate methods in provenance studies of obsidian artefacts

  • Lubomír Prokeš , Michaela Vašinová Galiová , Simona Hušková , Tomáš Vaculovič , Aleš Hrdlička , Andrew Zed Mason , Hector Neff , Antonín Přichystal and Viktor Kanický EMAIL logo
From the journal Chemical Papers

Abstract

The provenance of obsidian artefacts and raw materials was studied by the multivariate statistical analysis of forty-five samples using elemental composition data obtained by laser ablationinductively coupled plasma-mass spectrometry (LA-ICP-MS). One ICP-MS instrument equipped with a quadrupole mass filter and the other based on a time-of-flight analyser were coupled to the same type of laser ablation device (Nd:YAG 213 nm), thereby affording a comparison of the different mass spectrometers in terms of precision and verification of the consistency of the results. The influence of surface roughness (polished raw material vs artefact) and microinhomogeneity on the LA-ICP-MS signal was studied under the optimised working conditions of the laser ablation device. Principal component analysis, correspondence analysis, independent component analysis, multi-dimensional scaling, Sammon mapping and fuzzy cluster analysis were applied and compared in order to reveal statistically significant compositional differences between particular geological sites and to disclose the provenance of the raw materials used in manufacture of the artefacts. Twenty-seven artefacts and eighteen raw material samples from natural resources in the Czech Republic, Slovakia, Italy, Greece, Syria, Iraq, Turkey, Mexico and Nicaragua were examined with special attention focused on samples from Moravia (Czech Republic) and some Near East sites (Tell Arbid, Tell Asmar). The Carpathian origin of the obsidian artefacts was investigated in the Moravian samples using the Pb, Rb and U contents. The Near East samples were classified according to their Sr, Ba, Zr and REE contents as per-alkaline obsidians (Bingöl A/Nemrut Dağ) originating from Southeast Anatolia.

References

Abbés, F., Bellot-Gurlet, L., Bressy, C., Cauvin, M. C., Gratuze, B., & Poupeau, G. (2001). Nouvelles recherches sur l’obsidienne de Cheikh Hassan (vallee de l’Euphrate, Syrie) au neolithique: PPNA et PPNB ancient. Syria, 78, 5-17. DOI: 10.3406/syria.2001.7727. (in French) 10.3406/syria.2001.7727Search in Google Scholar

Baxter, M. J. (2006). A review of supervised and unsupervised pattern recognition in archaeometry. Archaeometry, 48, 671-694. DOI: 10.1111/j.1475-4754.2006.00280.x.10.1111/j.1475-4754.2006.00280.xSearch in Google Scholar

Baxter, M. J. (2009). Archaeological data analysis and fuzzy clustering. Archaeometry, 51, 1035-1054. DOI: 10.1111/j. 1475-4754.2008.00449.x.Search in Google Scholar

Biagi, P., de Francesco, A. M., & Bocci, M. (2007). New data on the archaeological obsidian from the Middle-Late Neolithic and Chalcolithic sites of the Banat and Transylvania (Romania). In J. K. Kozłowski, & P. Raczky (Eds.), The Lengyel, Polgar and related cultures in the Middle/Late Neolithic in Central Europe (pp. 309-326). Krakow, Poland: PAAS.Search in Google Scholar

Biro, K. T. (2004). Carpathian obsidians: Myth and reality. In Proceedings of the 34th International Symposium on Archaeometry, May 3-7, 2004 (pp. 267-277). Zaragoza, Spain: C.S.I.C.Search in Google Scholar

Bollong, C. A., Jacobson, L., Peisach, M., Pineda, C. A., & Sampson, C. G. (1997). Ordination versus clustering of elemental data from PIXE analysis of herder-hunter pottery: a comparison. Journal of Archaeological Science, 24, 319-327. DOI: 10.1006/jasc.1996.0116.10.1006/jasc.1996.0116Search in Google Scholar

Chataigner, C., Poidevin, J. L., & Arnaud, N. O. (1998). Turkish occurences of obsidian and use by prehistoric peoples in the Near East from 14,000 to 6000 BP. Journal of Volcanology and Geothermal Research, 85, 517-537. DOI: 10.1016/s0377-0273(98)00069-9.10.1016/S0377-0273(98)00069-9Search in Google Scholar

Constantinescu, B., Bugoi, R., & Sziki, G. (2002). Obsidian provenance studies of Transylvania’s Neolithic tools using PIXE, micro-PIXE and XRF. Nuclear Instruments and Methods in Physics Research B, 189, 373-377. DOI: 10.1016/s0168-583x(01)01092-8.10.1016/S0168-583X(01)01092-8Search in Google Scholar

Culicov, O. A., Frontasyeva, M. V., & Daraban, L. (2012). Characterization of obsidian found in Romania by neutron activation method. Romanian Reports in Physics, 64, 609-618. Search in Google Scholar

de Barros, C. E., Nardi, L. V. S., Dillenburg, S. R., Ayup, R., Jarvis, K., & Baitelli, R. (2010). Detrital minerals of modern beach sediments in southern Brazil: A provenance study based on the chemistry of zircon. Journal of Coastal Research, 26, 80-93. DOI: 10.2112/06-0817.1.10.2112/06-0817.1Search in Google Scholar

Elburg, M., Elburg, R., & Greig, A. (2002). Obsidian in Sachsen und die Verwendung von ICP-MS zur Herkunftsbestimmung von Rohmaterialien. Arbeits- und Forschungsberichte zur Sachsischen Bodendenkmalpflege, 44, 391-397. (in German) Forster, N., & Grave, P. (2012). Non-destructive PXRF analysis of museum-curated obsidian from the Near East. Journal of Archaeological Science, 39, 728-736. DOI: 10.1016/j.jas.2011.11.004.10.1016/j.jas.2011.11.004Search in Google Scholar

Frahm, E. (2012). Distinguishing Nemrut Da˘g and Bing¨ol A obsidians: geochemical and landscape differences and the archaeological implications. Journal of Archaeological Science, 39, 1436-1444. DOI: 10.1016/j.jas.2011.12.038.10.1016/j.jas.2011.12.038Search in Google Scholar

Galiová, M., Kaiser, J., Fortes, F. J., Novotny, K., Malina, R., Prokeš, L., Hrdlička, A., Vaculovič, T., Nyvltova Fišakova, M., Svoboda, J., Kanicky, V., & Laserna, J. J. (2010). Multielemental analysis of prehistoric animal teeth by laserinduced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Applied Optics, 49, C191-C199. DOI: 10.1364/ao.49.00c191.10.1364/AO.49.00C191Search in Google Scholar

Gholap, D. S., Izmer, A., De Samber, B., van Elteren, J. T., Šelih, V. S., Evens, R., De Schamphelaere, K., Janssen, C., Balcaen, L., Lindemann, I., Vincze, L., & Vanhaecke, F. (2010). Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia magna. Analytica Chimica Acta, 664, 19-26. DOI: 10.1016/j.aca.2010.01.052.10.1016/j.aca.2010.01.052Search in Google Scholar PubMed

Golitko, M., Meierhoff, J., Feinman, G. M., & Williams, P. R. (2012). Complexities of collapse: the evidence of Maya obsidian as revealed by social network graphical analysis. Antiquity, 86, 507-523.10.1017/S0003598X00062906Search in Google Scholar

Gratuze, B. (1999). Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: Sources and distribution of obsidian within the Aegean and Anatolia. Journal of Archaeological Science, 26, 869-881. DOI: 10.1006/jasc.1999.0459.10.1006/jasc.1999.0459Search in Google Scholar

Hare, D., Austin, C., Doble, P., & Arora, M. (2011). Elemental bio-imaging of trace elements in teeth using laser ablationinductively coupled plasma-mass spectrometry. Journal of Dentistry, 39, 397-403. DOI: 10.1016/j.jdent.2011.03.004.10.1016/j.jdent.2011.03.004Search in Google Scholar

Healey, E. (2007). Obsidian as an indicator of inter-regional contacts and exchange: three case-studies from the Halaf period. Anatolian Studies, 57, 171-189. DOI: 10.1017/s0066154600008590.10.1017/S0066154600008590Search in Google Scholar

Hrdlička, A., Prokeš, L., Vašinova Galiova, M., Novotny, K., Vitešnikova, A., Helešicova, T., & Kanicky, V. (2013). Provenance study of volcanic glass with 266-1064 nm orthogonal double pulse laser induced breakdown spectroscopy. Chemical Papers, 67, 546-555. DOI: 10.2478/s11696-013-0332-x.10.2478/s11696-013-0332-xSearch in Google Scholar

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13, 411-430. DOI: 10.1016/s0893-6080(00)00026-5.10.1016/S0893-6080(00)00026-5Search in Google Scholar

Kasztovszky, Z., Szilagii, V., Biro, K. T., Těžak-Gregl, T., Burić, M., Šošić, R., & Szakmany, G. (2009). Horvat es Bosnyak regeszeti lel¨ohelyekr¨ol szarmazo obszidian eszk¨oz¨ok eredetvizsgalata PGAA-val. Archeometriai M¨uhely, VI/3, 5-14. (in Hungarian) Search in Google Scholar

Kilikoglou, V., Bassiakos, Y., Grimanis, A. P., Souvatzis, K., Pilali-Papasteriou, A., & Papanthimou-Papaefthimiou, A. (1996). Carpathian obsidian in Macedonia, Greece. Journal of Archaeological Science, 23, 343-349. DOI: 10.1006/jasc.1996.0032.10.1006/jasc.1996.0032Search in Google Scholar

Kowalski, B. R., Schatzki, T. F., & Stross, F. H. (1972). Classification of archaeological artifacts by applying pattern recognition to trace element data. Analytical Chemistry, 44, 2176-2180. DOI: 10.1021/ac60321a002.10.1021/ac60321a002Search in Google Scholar

Lessig, V. P. (1972). Comparing cluster analyses with cophenetic correlation. Journal of Marketing Research, 9, 82-84. DOI: 10.2307/3149615.10.2307/3149615Search in Google Scholar

Lu, Y., Zhang, Y., Lai, Y., & Wang, Y. (2009). LA-ICPMS zircon U-Pb dating of magmatism and mineralization in the Jinchang gold ore-field, Heilongjiang province. Acta Petrologica Sinica, 2009, 2902-2912.Search in Google Scholar

Novotný, K., Kaiser, J., Galiova, M., Konečna, V., Novotny, J., Malina, R., Liška, M., Kanicky, V., & Otruba, V. (2008). Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1139-1144. DOI: 10.1016/j.sab.2008.06.011.10.1016/j.sab.2008.06.011Search in Google Scholar

Oddone, M., Marton, P., Bigazzi, G., & Biro, K. T. (1999). Chemical characterisations of Carpathian obsidian sources by instrumental and epithermal neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 240, 147-153. DOI: 10.1007/bf02349147.10.1007/BF02349147Search in Google Scholar

Peisach, M., Jacobson, L., Boulle, G. J., Gihwala, D., & Underhill, L. G. (1982). Multivariate analysis of trace elements determined in archaeological materials and its use for characterisation. Journal of Radioanalytical Chemistry, 69, 349-364. DOI: 10.1007/bf02515934.10.1007/BF02515934Search in Google Scholar

Přichystal, A. (2013). Lithic raw materials in prehistoric times of Eastern Central Europe. Brno, Czech Republic: Masaryk University Press.Search in Google Scholar

Punyadeera, C., Pillay, A. E., Jacobson, L., & Whitelaw, G. (1997). Application of XRF and correspondence analysis to provenance studies of coastal and inland archaeological pottery from the Mngeni river area, South Africa. XRay Spectrometry, 26, 249-256. DOI: 10.1002/(SICI)1097-4539(199709)26:5<249::AID-XRS188>3.0.CO;2-5.10.1002/(SICI)1097-4539(199709)26:5<249::AID-XRS188>3.0.CO;2-5Search in Google Scholar

Randle, K., Barfield, B. H., & Bagolini, B. (1993). Recent Italian obsidian analyses. Journal of Archaeological Science, 20, 503-509. DOI: 10.1006/jasc.1993.1031.10.1006/jasc.1993.1031Search in Google Scholar

Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17, 185-206. DOI: 10.1016/s0883-2927(01)00066-x.10.1016/S0883-2927(01)00066-XSearch in Google Scholar

Reimann, C., Filzmoser, P., Garrett, R., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R. Chichester, UK: Wiley.10.1002/9780470987605Search in Google Scholar

Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18, 401-409.DOI: 10.1109/t-c.1969.222678.10.1109/T-C.1969.222678Search in Google Scholar

Shackley, M. S. (2005). Obsidian. Geology and archaeology in the North American Southwest. Tucson, AZ, USA: University of Arizona Press.Search in Google Scholar

Tripković, B., & Milić, M. (2008): The origin and exchange of obsidian from Vinča - Belo Brdo. Starinar, 58, 71-86. DOI: 10.2298/sta0858071t.10.2298/STA0858071TSearch in Google Scholar

Tykot, R. H. (2002). Chemical fingerprinting and source tracing of obsidian: The Central Mediterranean trade in black gold. Accounts of Chemical Research, 35, 618-627. DOI: 10.1021/ar000208p.10.1021/ar000208pSearch in Google Scholar

Underhill, L. G., & Peisach, M. (1985). Correspondence analysis and its application in multielemental analysis. Journal of Trace and Microprobe Techniques, 3, 41-65.Search in Google Scholar

Velilla, S. (1993). A note on the multivariate Box-Cox transformation to normality. Statististics & Probability Letters, 17, 259-263. DOI: 10.1016/0167-7152(93)90200-3.10.1016/0167-7152(93)90200-3Search in Google Scholar

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. New York, NY, USA: Springer.10.1007/978-0-387-21706-2Search in Google Scholar

Williams Thorpe, O., Warren, S. E., & Nandris, J. G. (1984). The distribution and provenance of archaeological obsidian in central and eastern Europe. Journal of Archaeological Science, 11, 183-212. DOI: 10.1016/0305-4403(84)90001-3.10.1016/0305-4403(84)90001-3Search in Google Scholar

Wu, B., & Becker, J. S. (2012). Bioimaging of metals in rat brain hippocampus by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS) using highefficiency laser ablation chambers. International Journal of Mass Spectrometry, 323-324, 34-40. DOI: 10.1016/j.ijms.2012.06.012.10.1016/j.ijms.2012.06.012Search in Google Scholar

Zeman, A., & Navratil, O. (1987). Obsidian artifacts from the Neolithic locality Tešetice in Southern Moravia. In J. Konta (Ed.), Proceedings of the 2nd International Conference on Natural Glasses (pp. 177-181). Prague, Czech Republic: Charles University. Search in Google Scholar

Received: 2014-4-28
Revised: 2014-10-7
Accepted: 2014-10-15
Published Online: 2015-3-19
Published in Print: 2015-6-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0019/html
Scroll to top button