Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 7, 2021

Extended measuring depth dual-wavelength Fourier domain optical coherence tomography

  • Haroun Al-Mohamedi EMAIL logo , Ismael Kelly-Pérez , Theo Oltrup , Alan Cayless and Thomas Bende

Abstract

In this work an enhanced wide range dual band spectral domain optical coherence tomography technique (SD-OCT) is presented to increase the depth and accuracy of the measurement of optical A-scan biometry. The setup uses a Michelson interferometer with two wide-spectrum Superluminescent Diodes (SLD). The emissions of the SLDs are filtered by a long-pass filter (900 nm) in front of the reference mirror. The light is spectrally decomposed using a single reflective diffraction grating (1,800 lines/mm) and the whole spectrum captured with two CCD line sensors. The capabilities of the system have been validated using a self-made human model eye.


Corresponding author: Haroun Al-Mohamedi, Sektion für Experimentelle Ophthalmochirurgie, Universitätsklinikum Tübingen, Schleichstraße 12/1, 72076 Tübingen, Germany, E-mail:

Funding source: Dr. Ernst and Wilma Mueller Foundation

Acknowledgments

At this point, we would like to thank Dr. Ernst and Wilma Mueller Foundation for their support.

  1. Research funding: The funds for this work were provided by the Dr. Ernst and Wilma Mueller Foundation.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

References

1. Huang, D, Swanson, EA, Lin, CP, Schuman, JS, Stinson, WG, Chang, W, et al.. Optical coherence tomography. Science 1991;254:1178–81. https://doi.org/10.1126/science.1957169.Search in Google Scholar PubMed PubMed Central

2. de Boer, JF, Cense, B, Park, BH, Pierce, MC, Tearney, GJ, Bouma, BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 2003;28:2067–9. https://doi.org/10.1364/ol.28.002067.Search in Google Scholar PubMed

3. Song, S, Xu, J, Wang, RK. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source. Biomed Opt Express 2016;7:4734–48. https://doi.org/10.1364/boe.7.004734.Search in Google Scholar

4. Yaqoob, Z, Wu, J, Yang, C. Spectral domain optical coherence tomography: a better OCT imaging strategy. Biotechniques 2005;6:6–13. https://doi.org/10.2144/000112090.Search in Google Scholar PubMed

5. Aumann, S, Donner, S, Fischer, J, Müller, F. Optical coherence tomography (OCT): principle and technical realization. Cham: Springer; 2019.10.1007/978-3-030-16638-0_3Search in Google Scholar PubMed

6. Fercher, AF. Optical coherence tomography - development, principles, applications. Z Med Phys 2010;20:251–76. https://doi.org/10.1016/j.zemedi.2009.11.002.Search in Google Scholar PubMed

7. Choma, M, Sarunic, M, Yang, C, Izatt, J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 2003;11:2183–9. https://doi.org/10.1364/oe.11.002183.Search in Google Scholar PubMed

8. Al-Mohamedi, H, Kelly-Pérez, I, Prinz, A, Oltrup, T, Leitritz, M, Cayless, A, et al.. A systematic comparison and evaluation of three different Swept-Source interferometers for eye lengths biometry. Z Med Phys 2019;1:16–21. https://doi.org/10.1016/j.zemedi.2018.05.004.Search in Google Scholar PubMed

9. Hausler, G, Lindner, MW. ‘Coherence radar’ and ‘spectral radar’-new tools for dermatological diagnosis. J Biomed Opt 1998;3:21–31.10.1117/1.429899Search in Google Scholar PubMed

10. Zhang, J, Wang, P, Chen, Z. Long imaging range optical coherence tomography based on a narrow line width dual band Fourier domain mode-locked swept source. Proc SPIE 2011;7889:366–71.10.1117/12.875997Search in Google Scholar

11. Katzir, G, Howland, HC. Corneal power and underwater accommodation in great cormorants. J Exp Biol 2003;206:833–41. https://doi.org/10.1242/jeb.00142.Search in Google Scholar PubMed

12. Fan, S, Li, L, Li, Q, Dai, C, Ren, Q, Jiao, S, et al.. Dual band dual focus optical coherence tomography for imaging the whole eye segment. Biomed Opt Express 2015;6:2481–93. https://doi.org/10.1364/boe.6.002481.Search in Google Scholar

13. Pascolini, D, Mariotti, SP. Global estimates of visual impairment: 2010. Br J Ophthalmol 2012;96:614–8. https://doi.org/10.1136/bjophthalmol-2011-300539.Search in Google Scholar PubMed

14. Song, E, Sun, H, Xu, Y, Ma, Y, Zhu, H, Pan, CW. Age-related cataract, cataract surgery and subsequent mortality: a systematic review and meta-analysis. PloS One 2014;9:e112054. https://doi.org/10.1371/journal.pone.0112054.Search in Google Scholar PubMed PubMed Central

15. Nanayakkara, SD. Vision-related quality of life among elders with cataract in Sri Lanka: findings from a study in Gampaha district. Asia Pac J Publ Health 2009;21:303–11. https://doi.org/10.1177/1010539509336010.Search in Google Scholar PubMed

16. Medical Advisory Secretariat. Intraocular lenses for the treatment of age-related cataracts: an evidence-based analysis. Ontario Health Technol Assess Ser 2009;9:1–62.Search in Google Scholar

17. Jin, GJ, Crandall, AS, Jones, JJ. Intraocular lens exchanges due to incorrect lens power. Ophthalmology 2007;114:417–24. https://doi.org/10.1016/j.ophtha.2006.07.041.Search in Google Scholar PubMed

18. Manhas, A, Manhas, RS, Manhas, GS, Gupta, D. Evaluation of complications of phacoemulsification with PCIOL implantation Surgery. Int J Med Biomed Sci 2019;3:101–5. https://doi.org/10.32553/ijmbs.v3i10.618.Search in Google Scholar

19. Thanigasalam, T, Reddy, SC, Zaki, RA. Factors associated with complications and postoperative visual outcomes of cataract surgery; a study of 1,632 cases. J Ophthalmic Vis Res 2015;10:375–84. https://doi.org/10.4103/2008-322x.158892.Search in Google Scholar PubMed PubMed Central

20. Bhagat, N, Nissirios, N, Potdevin, L, Chung, J, Lama, P, Zarbin, MA, et al.. Complications in resident-performed phacoemulsification cataract surgery at New Jersey Medical School. Br J Ophthalmol 2007;91:1315–7. https://doi.org/10.1136/bjo.2006.111971.Search in Google Scholar PubMed PubMed Central

21. Agarwal, A, Fan, S, Invernizzi, A, Do, DV, Nguyen, QD, Harms, NV, et al.. Characterization of retinal structure and diagnosis of peripheral acquired retinoschisis using high-resolution ultrasound B-scan. Graefes Arch Clin Exp Ophthalmol 2016;254:69–75. https://doi.org/10.1007/s00417-015-3013-3.Search in Google Scholar PubMed

22. Prager, TC, Hardten, DR, Fogal, BJ. Enhancing intraocular lens outcome precision: an evaluation of axial length determinations, keratometry, and IOL formulas. Ophthalmol Clin North Am 2006;9:435–48. https://doi.org/10.1016/j.ohc.2006.07.009.Search in Google Scholar PubMed

23. Olsen, T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 2007;85:472–85. https://doi.org/10.1111/j.1755-3768.2007.00879.x.Search in Google Scholar

24. Wang, J-K, Chang, S-W. Optical biometry intraocular lens power calculation using different formulas in patients with different axial lengths. Int J Ophthalmol 2013;6:150–4. https://doi.org/10.3980/j.issn.2222-3959.2013.02.08.Search in Google Scholar PubMed PubMed Central

25. Al-Mohamedi, H, Prinz, A, Mieskes, G, Oltrup, T, Bende, T. Length measurement of the eye using a swept-source interferometer. Biomed Tech 2014;59:53–7. https://doi.org/10.1515/bmt-2013-0022.Search in Google Scholar PubMed

26. Leitgeb, R, Hitzenberger, C, Fercher, A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 2003;11:889–94. https://doi.org/10.1364/oe.11.000889.Search in Google Scholar PubMed

27. Rollins, AM, Izatt, JA. SNR analysis of conventional and optimal fiber optic low-coherence interferometer topologies. Proc SPIE 2000;3915:60–7.10.1117/12.384175Search in Google Scholar

28. Dubois, A, Grieve, K, Moneron, G, Lecaque, R, Vabre, L, Boccara, C. Ultrahigh-resolution full-field optical coherence tomography. Appl Opt 2004;43:2874–83. https://doi.org/10.1364/ao.43.002874.Search in Google Scholar PubMed

29. Fercher, AF, Drexler, W, Hitzenberger, CK, Lasser, T. Optical coherence tomography-principles and applications. Rep Prog Phys 2003;66:239–303. https://doi.org/10.1088/0034-4885/66/2/204.Search in Google Scholar

30. de Boer, JF, Leitgeb, R, Wojtkowski, M. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT. Biomed Opt Express 2017;8:3248–80. https://doi.org/10.1364/boe.8.003248.Search in Google Scholar PubMed PubMed Central

31. Grulkowski, I, Liu, JJ, Zhang, JY, Potsaid, B, Jayaraman, V, Cable, AE, et al.. Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Ophthalmology 2013;120:2184–90. https://doi.org/10.1016/j.ophtha.2013.04.007.Search in Google Scholar PubMed PubMed Central

32. Kiraly, L, Stange, J, Kunert, KS, Sel, S. Repeatability and agreement of central corneal thickness and keratometry measurements between four different devices. J Ophthalmol 2017;2017:6181405. https://doi.org/10.1155/2017/6181405.Search in Google Scholar PubMed PubMed Central

33. Grulkowski, I, Liu, JJ, Potsaid, B, Jayaraman, V, Lu, CD, Jiang, J, et al.. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed Opt Express 2012;3:2733–51. https://doi.org/10.1364/boe.3.002733.Search in Google Scholar PubMed PubMed Central

34. ANSI. American National Standard for Safe Use of Lasers, ANSI Z136.1–2007. Orlando: Laser Institute of America; 2007:1–249 pp.Search in Google Scholar

35. Delori, FC, Webb, RH, Sliney, DH, American National Standards Institute. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am Opt Image Sci Vis 2007;24:1250–65. https://doi.org/10.1364/josaa.24.001250.Search in Google Scholar PubMed

36. Lee, AC, Qazi, MA, Pepose, JS. Biometry and intraocular lens power calculation. Curr Opin Ophthalmol 2008;19:13–7. https://doi.org/10.1097/icu.0b013e3282f1c5ad.Search in Google Scholar PubMed

37. Huang, J, Savini, G, Hoffer, KJ, Chen, H, Lu, W, Hu, Q, et al.. Repeatability and interobserver reproducibility of a new optical biometer based on swept-source optical coherence tomography and comparison with IOL Master. Br J Ophthalmol 2017;101:493–8. https://doi.org/10.1136/bjophthalmol-2016-308352.Search in Google Scholar PubMed

38. Hoffer, KJ, Aramberri, J, Haigis, W, Olsen, T, Savini, G, Shammas, HJ, et al.. Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol 2015;160:403–5.e1. https://doi.org/10.1016/j.ajo.2015.05.029.Search in Google Scholar PubMed

39. Podoleanu, AG. Optical coherence tomography. J Microsc 2012;247:209–19. https://doi.org/10.1111/j.1365-2818.2012.03619.x.Search in Google Scholar PubMed PubMed Central

40. Pircher, M, Götzinger, E, Leitgeb, R, Fercher, A, Hitzenberger, C. Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography. Opt Express 2003;11:2190–7. https://doi.org/10.1364/oe.11.002190.Search in Google Scholar PubMed

41. Yun, S, Tearney, G, Bouma, B, Park, B, de Boer, J. High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. Opt Express 2003;11:3598–604. https://doi.org/10.1364/oe.11.003598.Search in Google Scholar PubMed PubMed Central

42. Shao, Y, Tao, A, Jiang, H, Shen, M, Zhu, D, Lu, F, et al.. Long scan depth optical coherence tomography on imaging accommodation: impact of enhanced axial resolution, signal-to-noise ratio and speed. Eye Vis 2018;5:16. https://doi.org/10.1186/s40662-018-0111-4.Search in Google Scholar PubMed PubMed Central

Received: 2020-07-14
Accepted: 2021-05-18
Published Online: 2021-06-07
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/bmt-2020-0350/html
Scroll to top button