Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 30, 2010

Bacterial cleanup: lateral diffusion of hydrophobic molecules through protein channel walls

  • Bert van den Berg
From the journal Biomolecular Concepts

Abstract

The outer membrane (OM) of Gram-negative bacteria forms a very efficient barrier against the permeation of both hydrophilic and hydrophobic compounds, owing to the presence of lipopolysaccharides on the outside of the cell. Although much is known about the OM passage of hydrophilic molecules, it is much less clear how hydrophobic molecules cross this barrier. Members of the FadL channel family, which are widespread in Gram-negative bacteria, are so far the only proteins with an established role in the uptake of hydrophobic molecules across the OM. Recent structural and biochemical research has shown that these channels operate according to a unique lateral diffusion mechanism, in which the substrate moves from the lumen of the barrel into the OM via an unusual opening in the wall of the barrel. Understanding how hydrophobic molecules cross the OM is not only of fundamental importance but could also have applications in the design of novel, hydrophobic drugs, biofuel production and the generation of more efficient bacterial biodegrader strains.


Corresponding author

Published Online: 2010-09-30
Published in Print: 2010-10-01

©2010 by Walter de Gruyter Berlin New York

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/bmc.2010.024/html
Scroll to top button