Skip to main content
Log in

Structural and phylogenetic analysis of α-glucosidase protein in insects

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

α-Glucosidases (αglus) (EC 3.2.1.20) have been detected in a wide range of plants, animals and microorganisms and are described by their ability to catalyze the hydrolysis of 1,4-α-glucosidic linkages, releasing α-glucose. In this study, 96 αglu protein sequences from 33 organisms species including different insects species, plants (including thale cress and rice), mammals (including human and mouse) and Mycobacterium tuberculosis as a bacterium were aligned. Sequences were analyzed by computational tools to predict the protein properties, such as molecular mass, isoelectric point, signal peptide, conserved motifs, transmembrane domain and secondary structure. Drosophila melanogaster (GenBank Accession No.: NP 610382) was chosen as one of the representatives of insects for further analyses. The tertiary structure of representative samples were acquired using the tertiary structure of oligo-1,6-glucosidase from Bacillus cereus (Protein Data Bank code: 1UOK) as a template by Phyre2 server. Protein structure analysis revealed there is a high identity among insects and other organisms. There were some similar functional domains between D. melanogaster and M. tuberculosis. The modeled αglu has a typical spatial structure in insects and exhibits a high similarity with other organisms, especially Arabidopsis thaliana. Phylogenetic analysis indicated that D. melanogaster αglu has a close relationship with other αglus from different insect families. According to these results, αglu in insects should be evolved from a common ancestor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

αglu:

α-glucosidase

BLAST:

Basic local alignment search tool

GH:

glycoside hydrolase

MAST:

Motif alignment and search tool

MEGA:

Molecular evolutionary genetic analysis

MEME:

Multiple em for motif elicitation

NCBI:

National Center for Biotechnology Information

NJ:

neighbor-joining

PDB:

Protein Data Bank

PHYRE:

Protein Homology/analogY Recognition Engine

ProDom:

Protein Domain Database

RMSD:

root-mean square deviation

SOPMA:

self-optimized prediction method with alignment

References

  • Aghaali N., Ghadamyari M. & Ajamhasani M. 2012. Biochemical characterization of glucosidases and galactosidases from Rosaceae branch borer, Osphranteria coerulescens Redt. (Col.: Cerambycidae). Rom. J. Biochem. 49 125–137.

    CAS  Google Scholar 

  • Altay G., Altay N. & Neal D. 2013. Global assessment of network inference algorithms based on available literature of gene/protein interactions. Turk. J. Biol. 37 547–555.

    Article  Google Scholar 

  • Bailey T.L., Williams N., Misleh C. & Li W.W. 2006. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34 369–373.

    Article  CAS  Google Scholar 

  • Baker J.E. 1991. Properties of glycosidases from the maize weevil, Sitophilus zeamais. Insect Biochem. 21 615–621.

    Article  CAS  Google Scholar 

  • Baker R.J. & Lehner Y. 1972. A look at honey bee gut functions. Bee J. 112 336–338.

    Google Scholar 

  • Campbell L.K., White J.R. & Campbell R.K. 1996. Acarbose: its role in the treatment of diabetes mellitus. Ann. Pharmacother. 30 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  • Chiba S. 1997. Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 61 1233–1239.

    Article  CAS  PubMed  Google Scholar 

  • Combet C., Blanchet C., Geourjon C. & Deleage G. 2000. NPS@: network protein sequence analysis. Trends Biochem. Sci. 25 147–150.

    Article  CAS  PubMed  Google Scholar 

  • Corpet F., Gouzy J. & Kahn D. 1998. The ProDom database of protein domain families. Nucleic Acids Res. 26 323–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Lage J.L., Danchin E.G. & Casane D. 2007. Where do animal α-amylases come from? An interkingdom trip. FEBS Lett. 581 3927–3935.

    Article  PubMed  CAS  Google Scholar 

  • Da Lage J.L., Maczkowiak F. & Cariou M.L. 2011. Phylogenetic distribution of intron positions in α-amylase genes of bilateria suggests numerous gains and losses. PLoS One 6: e19673.

    Google Scholar 

  • Darabi M. & Farhadi-Nejad H. 2013. Study of the 3-hydroxy-3-methylglotaryl-coenzyme A reductase (HMGR) protein in Rosaceae by bioinformatics tools. Caryologia 66 351–359.

    Article  Google Scholar 

  • Darabi M., Masoudi-Nejad A. & Nemat-Zadeh G. 2012. Bioinformatics study of the 3-hydroxy-3-methylglotaryl-coenzyme A reductase (HMGR) gene in Gramineae. Mol. Biol. Rep. 39 8925–8935.

    Article  CAS  PubMed  Google Scholar 

  • Darabi M. & Seddigh S. 2013. Phylogenetic study of the 3-hydroxy-3-methylglotaryl-Coenzyme A reductase (HMGR) protein in six different family. Eur. J. Exp. Biol. 3 158–164.

    Google Scholar 

  • Desroches P., Mandon N., Beaehr J.C. & Huignard J. 1997. Mediation of host plant use by a glucoside in Callosobruchus maculatus F. (Coleoptera: Bruchidae). J. Insect Physiol. 43 439–446.

    Article  Google Scholar 

  • Emanuelsson O., Nielsen H., Brunak S. & von Heijne G. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300 1005–1016.

    Article  CAS  PubMed  Google Scholar 

  • Ernst H.A., Lo Leggio L., Willemoës M., Leonard G., Blum P. & Larsen S. 2006. Structure of the Sulfolobus solfataricus α-glucosidase: implications for domain conservation and substrate recognition in GH31. J. Mol. Biol. 358 1106–1124.

    Article  CAS  PubMed  Google Scholar 

  • Erthal J.R., Silva C.P. & Samuels R.I. 2007. Digestive enzymes in larvae of the leaf cutting ant, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini). J. Insect Physiol. 53 1101–1111.

    Article  CAS  PubMed  Google Scholar 

  • Frandsed T.P. & Svensson B. 1998. Plant α-glucosidases of the glycoside hydrolase family 31: molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Mol. Biol. 37 1–13.

    Article  Google Scholar 

  • Gabrisko M. 2013. Evolutionary history of eukaryotic α-glucosidases from the α-amylase family. J. Mol. Evol. 76 129–145.

    Article  CAS  PubMed  Google Scholar 

  • Gabrisko M. & Janecek S. 2011. Characterization of maltase clusters in the genus Drosophila. J. Mol. Evol. 72 104–118.

    Article  CAS  PubMed  Google Scholar 

  • Geber A., Williamson P.R., Rex J.H., Sweeney E.C. & Bennett J.E. 1992. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization. J. Bacteriol. 174 6992–6996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geourjon C. & Deleage G. 1995. SOPMA: significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Applic. Biosci. 11 681–684.

    CAS  Google Scholar 

  • Ghadamyari M., Hosseininaveh V. & Sharifi M. 2010. Partial biochemical characterization of α- and β-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep.: Pyralidae). C. R. Biol. 333 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem. J. 280 309–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B. & Bairoch A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316 695–696.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsh A.J., Yao S.Y., Young J.D. & Cheeseman C.I. 1997. Inhibition of glucose absorption in the rat jejunum: a novel action of α-D-glucosidase inhibitors. Gastroenterology 113 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Hoefsloot L.H., Hoogeveen-Westerveld M., Kroos M.A., van Beeumen J. & Reuser A.J. 1988. Primary structure and processing of lysosomal α-glucosidase; homology with the intestinal sucrose-isomaltase complex. EMBO J. 7 1697–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hondoh H., Saburi W., Mori H., Okuyama M., Nakada T., Matsuura Y. & Kimura A. 2008. Substrate recognition mechanism of 1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J. Mol. Biol. 378 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Hong S.H. & Marmur J. 1986. Primary structure of the maltase gene of the MAL6 locus of Saccharomyces carlsbergensis. Gene 41 75–84.

    Article  CAS  PubMed  Google Scholar 

  • Huber R.E. & Mathison R.D. 1976. Physical, chemical and enzymatic studies on the major sucrose on honey bees (Apis mellifera). Can. J. Biochem. 54 153–164.

    Article  CAS  PubMed  Google Scholar 

  • Im R., Mano H., Nakatani S., Shimizu J. & Wada M. 2008. Aqueous extract of Kothala himbutu (Salacia reticulata) stems promotes oxygen consumption and suppresses body fat accumulation in mice. J. Health Sci. 54 645–653.

    Article  Google Scholar 

  • James A.A., Blackmer K. & Racciopi J.V. 1989. A salivary glandspecific, maltase-like gene of the vector mosquito, Aedes aegypti. Gene 75 73–83.

    Article  CAS  PubMed  Google Scholar 

  • Janecek S. 1992. New conserved amino acid region of α-amylases in the third loop of their (β/α)8-barrel domains. Biochem. J. 288 1069–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janecek S. 1994a. Parallel β/α-barrels of α-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of β-amylase: evolutionary distance is a reflection of unrelated sequences. FEBS Lett. 353 119–123.

    Article  CAS  PubMed  Google Scholar 

  • Janecek S. 1994b. Sequence similarities and evolutionary relationships of microbial, plant and animal α-amylases. Eur. J. Biochem. 224 519–524.

    Article  CAS  PubMed  Google Scholar 

  • Janecek S. 1995. Close evolutionary relatedness among functionally distantly related members of the (α/β)8-barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region. FEBS Lett. 377 6–8.

    Article  CAS  PubMed  Google Scholar 

  • Janecek S. 1997. α-Amylase family: molecular biology and evolution. Progr. Biophys. Mol. Biol. 67 67–97.

    Article  CAS  Google Scholar 

  • Janecek S. 2002. How many conserved sequence regions are there in the α-amylase family. Biologia 57 (Suppl. 11): 11 29–41.

    Google Scholar 

  • Janecek S., Svensson B. & MacGregor E.A. 2007. A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31. FEBS Lett. 581 1261–1268.

    Article  CAS  PubMed  Google Scholar 

  • Kazzazi M., Bandani A.R. & Hosseinkhani S. 2005. Biochemical characterization of α-amylase of the Sunn pest, Eurygaster integriceps. Entomol. Sci. 8 371–377.

    Article  Google Scholar 

  • Kelley L.A. & Sternberg M.J. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4 363–371.

    Article  CAS  PubMed  Google Scholar 

  • Kesici K., Tüney I., Zeren D., Güden M. & Sukatar A. 2013. Morphological and molecular identification of pennate diatoms isolated from Urla, Izmir, coast of the Aegean Sea. Turk. J. Biol. 37 530–537.

    Article  CAS  Google Scholar 

  • Kimura A., Kitahara F.Y. & Chiba S. 1987. Characteristics of transglucosylation of honey bee α-glucosidase I. Agric. Biol. Chem. 51 1859–1864.

    CAS  Google Scholar 

  • Kimura A., Takata M., Sakai O., Matsui H., Takai N., Takayanagi T., Nishimura I., Uozumi T. & Chiba S. 1992. Complete amino acid sequence of crystalline α-glucosidase from Aspergillus niger. Biosci. Biotechnol. Biochem. 56 1368–1370.

    Article  CAS  PubMed  Google Scholar 

  • Kimura A., Takewaki S., Matsui H., Kubota M. & Chiba S. 1990. Allosteric properties, substrate specificity and subsite affinities of honeybee α-glucosidase I. J. Biochem. 107 762–768.

    Article  CAS  PubMed  Google Scholar 

  • Kober L., Zehe C. & Bode J. 2013. Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol. Bioeng. 110 1164–1173.

    Article  CAS  PubMed  Google Scholar 

  • Kubota M., Tsuji M., Nishimoto M., Wongchawalite J., Okuyama M., Mori H., Matsui H., Surarit R., Svasti J., Kimura A. & Chiba S. 2004. Localization of α-glucosidases I, II and III in organs of European honeybee, Apis mellifera L., and origin of α-glucosidase in honey. Biosci. Biotechnol. Biochem. 68 2346–2352.

    Article  CAS  PubMed  Google Scholar 

  • Kumar S., Narwal S., Kumar V. & Prakash O. 2011. α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacognosy Rev. 5 19–29.

    Article  CAS  Google Scholar 

  • Laskowski R.A., MacArthur M.W., Moss D.S. & Thornton J.M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26 283–291.

    Article  CAS  Google Scholar 

  • Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M. & Henrissat B. 2014. The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490–D495.

    Google Scholar 

  • Lovering A.L., Lee S.S., Kim Y.W., Withers S.G. & Strynadka N.C. 2005. Mechanistic and structural analysis of a family 31 α-glycosidase and its glycosyl-enzyme intermediate. J. Biol. Chem. 280 2105–2115.

    Article  CAS  PubMed  Google Scholar 

  • MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546 1–20.

    Article  CAS  PubMed  Google Scholar 

  • MacGregor E. A. & Svensson B. 1989. A super-secondary structure predicted to be common to several α-1,4-D-glucancleaving enzymes. Biochem. J. 259 145–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda H., Yoshikawa M., Morikawa T., Tanabe G. & Muraoka O. 2005. Antidiabetogenic constituents from Salacia species. Journal of Traditional Medicines 22 (Suppl. 1): 145–153.

    CAS  Google Scholar 

  • Matsuura Y., Kusunoki M., Harada W. & Kakudo M. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95 697–702.

    Article  CAS  PubMed  Google Scholar 

  • Mendiola-Olaya E., Valencia-Jimenez A., Valdes-Rodriguez S., Delano-Frier J. & Blanco-Labra A. 2000. Digestive amylase from the larger grain borer, Prostephanus truncates Horn. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 126 425–433.

    Article  CAS  PubMed  Google Scholar 

  • Mohammed M.A. 2004. Purification and characterization of α-amylase from the infective juveniles of the nematode Heterorhabditis bacteriophaga. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139 1–9.

    Article  CAS  Google Scholar 

  • Murai A., Iwamura K., Takada M., Ogawa K., Usui T. & Okumura J. 2002. Control of postprandial hyperglycaemia by galactosyl maltobionolactone and its novel anti-amylase effect in mice. Life Sci. 71 1405–1415.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima R., Imanaka T. & Aiba S. 1986. Comparison of amino acid sequences of eleven different α-amylases Appl. Microbiol. Biotechnol. 23 355–360.

    Article  CAS  Google Scholar 

  • Nakamura A., Nishimura I., Yokoyama A., Lee D.G., Hidaka M., Masaki H., Kimura A., Chiba S. & Uozumi T. 1997. Cloning and sequencing of an α-glucosidase gene from Aspergillus niger and its expression in A. nidulans. J. Biotechnol. 53 75–84.

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto M., Kubota M., Tsuji M., Mori H., Kimura A., Matsui H. & Chiba S. 2001. Purification and substrate specificity of honeybee, Apis mellifera L., α-glucosidase I.I. Biosci. Biotechnol. Biochem. 65 1610–1616.

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto M., Mori H., Moteki T., Takamura Y., Iwai G., Miyaguchi Y., Okuyama M., Wongchawalit J., Surarit R., Svasti J., Kimura A. & Chiba S. 2007. Molecular cloning of cDNAs and genes for three α-glucosidases from European honeybees, Apis mellifera L., and heterologous production of recombinant enzymes in Pichia pastoris. Biosci. Biotechnol. Biochem. 71 1703–1716.

    Article  CAS  PubMed  Google Scholar 

  • Okuyama M., Okuno A., Shimizu N., Mori H., Kimura A. & Chiba S. 2001. Carboxyl group of residue Asp647 as possible proton donor in catalytic reaction of α-glucosidase from Schizosaccharomyces pombe. Eur. J. Biochem. 268 2270–2280.

    Article  CAS  PubMed  Google Scholar 

  • Okuyama M., Tanimoto Y., Ito T., Anzai A., Mori H., Kimura A., Matsui H. & Chiba S. 2005. Purification and characterization of the hyper-glycosylated extracellular α-glucosidase from Schizosaccharomyces pombe. Enzyme Microb. Technol. 37 472–480.

    Article  CAS  Google Scholar 

  • Oliveira-Neto O., Batista J.A.N., Rigden D.J., Franco O.L., Falcao R., Fragoso R.R., Mello L.V., Santos R.C.D. & Grosside-Sa M.F. 2003. Molecular cloning of α-amylase from cotton boll weevil, Anthonomus grandis and structural relations to plant inhibitors: an approach to insect resistance. J. Protein Chem. 22 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Petersen T.N., Brunak S., von Heijne G. & Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8 785–786.

    Article  CAS  PubMed  Google Scholar 

  • Ramzi S. & Hosseininaveh V. 2010. Biochemical characterization of digestive α-amylase, α-glucosidase and β-glucosidase in pistachio green stink bug, Brachynema germari Kolenati (Hemiptera: Pentatomidae). J. Asia-Paci?c Entomol. 13 215–219.

    Article  CAS  Google Scholar 

  • Riseh N.S., Ghadamyari M. & Motamediniya B. 2012. Biochemical characterization of α & β-glucosidases and α & β-galactosidases from red palm weevil, Rhynchophorus ferrugineus Olivieri (Col.: Curculionidae). Plant Protect. Sci. 2 85–93.

    Article  Google Scholar 

  • Saburi W., Mori H., Saito S., Okuyama M. & Kimura A. 2006. Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim. Biophys. Acta. 1764 688–698.

    Article  CAS  PubMed  Google Scholar 

  • Seddigh S. & Darabi M. 2014. Comprehensive analysis of β-galactosidase protein in plants based of Arabidopsis thaliana. Turk. J. Biol. 38 140–150.

    Article  CAS  Google Scholar 

  • Seddigh S., Masoudi-Nejad A., Tafaghodinia B. & Imani S. 2012. Comparing carbohydrate enzymes activity in Eurygaster integriceps putton (Hemiptera: Scutelleridae), Rhopalosiphum padi L. (Homoptera: Aphididae) and Haplothrips tritici kurd. (Phlaeothripidae: Thysanoptera) as a complex pest on wheat. Munis Entomol. Zool. 7 344–351.

    Google Scholar 

  • Seghrouchni I., Dral J. & Bannier E. 2002. Oxidative stress parameters in type I, type II and insulin treated type II diabetes mellitus; insulin treatment efficiency. Clin. Chim. Acta 321 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Sharifi M., Ghadamyari M., Mahdavi Moghadam M. & Saiidi F. 2011. Biochemical characterization of digestive carbohydrases from Xanthogaleruca luteola and inhibition of its α-amylase by inhibitors extracted from the common bean. Arch. Biol. Sci. 63 705–716.

    Article  Google Scholar 

  • Silva C.P. & Terra W.R. 1997. α-Galactosidase activity in ingested seeds and in the midgut of Dysdercus peruvianus (Hemiptera: Pyrrhocoridae). Arch. Insect Biochem. 34 443–460.

    Article  CAS  Google Scholar 

  • Sim L., Quezada-Calvillo R., Sterchi E.E., Nichols B.L. & Rose D.R. 2008. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 375 782–792.

    Article  CAS  PubMed  Google Scholar 

  • Svensson B. 1994. Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol. Biol. 25 141–157.

    Article  CAS  PubMed  Google Scholar 

  • Svensson B., Tovborg Jensen M., Mori H., Sass Bak-Jensen K., Bonsager B., Nielsen P.K., Kramhoft B., Praetorius-Ibba M., Nohr J., Juge N., Greffe L., Williamson G. & Driguez H. 2002. Fascinating facets of function and structure of amylolytic enzymes of glycoside hydrolyse family 13. Biologia 57 (Suppl. 11): 5–19.

    CAS  Google Scholar 

  • Snyder M. & Davidson N. 1983. Two gene families clustered in a small region of th. Drosophila genome. J. Mol. Biol. 166 101–118.

    CAS  Google Scholar 

  • Takewaki S., Chiba S., Kimura A., Matsui H. & Koike Y. 1980. Purification and properties of α-glucosidase of the honey bee Apis mellifera L. Agric. Biol. Chem. 44 731–740.

    CAS  Google Scholar 

  • Takewaki S., Kimura A., Kunota M. & Chiba S. 1993. Substrate specificity and subsite affinities of honeybee α-glucosidase II. Biosci. Biotechnol. Biochem. 57 1508–1513.

    Article  CAS  Google Scholar 

  • Takii Y., Daimon K. & Suzuki Y. 1992. Cloning and expression of a thermostable exo-α-1,4-glucosidase gene from Bacillus stearothermophilus ATCC12016 in Escherichia coli. Appl. Microbiol. Biotechnol. 38 243–247.

    Article  CAS  PubMed  Google Scholar 

  • Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimura T., Kitamura K., Fukuda T. & Kikuchi T. 1979. Purification and partial characterization of three forms of α-glucosidase from the fruit fly Drosophila melanogaster. Biochem. J. 85 123–130.

    Article  CAS  Google Scholar 

  • Terra W.R. 1988. Physiology and biochemistry of insect digestion: an evolutionary perspective. Braz. J. Med. Biol. Res. 21 675–734.

    CAS  PubMed  Google Scholar 

  • Terra W.R., Ferreira C., Jordao B.P. & Dillon R.J. 1996. Digestive enzymes, pp. 153–193. In: Lehane M.J. & Billingsley P.F. (eds). Biology of the Insect Midgut, Chapman & Hall, London.

    Chapter  Google Scholar 

  • Terra W.R. & Ferreira C. 2005. Comprehensive molecular insect science, pp. 171–224. In: Gilbert L.I., Iatrou K. & Gill S.S. (eds). Biochemistry of Digestion, Volume 4, Elsevier, Oxford.

    Google Scholar 

  • Tibbot B.K. & Skadsen R.W. 1996. Molecular cloning and characterization of a gibberellins-inducible, putative α-glucosidase gene from barley. Plant Mol. Biol. 30 229–241.

    Article  CAS  PubMed  Google Scholar 

  • Vaidyartanam P.S. 1993. In: Warrier P.K., Nambiar V.P.K. & Ramankutty C. (eds). Indian Medicinal Plants: A Compendium of 500 Species, Orient Longman, Madras, India.

  • Von Heijne G. 1985. Signal sequences: the limits of variation. J. Mol. Biol. 184 99–105.

    Article  Google Scholar 

  • Watanabe K., Hata Y., Kizaki H., Katsube Y. & Suzuki Y. 1997. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J. Mol. Biol. 269 142–153.

    Article  CAS  PubMed  Google Scholar 

  • Xu J. & Zhang Y. 2010. How significant is a protein structure similarity with TM-score=0.5. Bioinformatics 26 889–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki Y. & Konno H. 1985. Two forms of α-glucosidase from soybean callus. Agric. Biol. Chem. 49 849–850.

    CAS  Google Scholar 

  • Yamasaki Y. & Suzuki Y. 1980. Two forms of α-glucosidase from sugar beet seeds. Planta 148 354–361.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y. & Skolnick J. 2004. Scoring function for automated assessment of protein structure template quality. Proteins 57 702–710.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Varamin-Pishva Branch of Islamic Azad University for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samin Seddigh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seddigh, S., Darabi, M. Structural and phylogenetic analysis of α-glucosidase protein in insects. Biologia 70, 812–825 (2015). https://doi.org/10.1515/biolog-2015-0096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0096

Key words

Navigation