Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 28, 2007

SUMOylation modulates transcriptional repression by TRPS1

  • Frank J. Kaiser , Hermann-Josef Lüdecke and Stefan Weger
From the journal Biological Chemistry

Abstract

Mutations or deletions of the TRPS1 gene on human chromosome 8q.24.1 cause the tricho-rhino-phalangeal syndromes (TRPS), which are characterized by craniofacial and skeletal malformations. The gene encodes a transcription factor that functions as a repressor for GATA-mediated transcription. The activity of transcription factors is often controlled by posttranslational modifications. We show here that TRPS1 is SUMOylated at multiple sites, both in vivo and in vitro, through interaction with UBC9. Overexpression of wild-type UBC9 enhances TRPS1-mediated transcriptional repression. In contrast, a SUMOylation-deficient UBC9 mutant, which nevertheless still binds TRPS1, has no effect. Of the five potential TRPS1 SUMO-target sites, which were predicted based on a minimal SUMOylation consensus sequence (MCS), two are located within the C-terminal repression domain (RD) at lysine residues 1192 (termed S4) and 1201 (S5). S5 was identified as the major acceptor site within this region, and a point mutation of S5 strongly decreases TRPS1-RD-mediated transcriptional repression. Additional mutation of S4 results in abrogation of SUMOylation at the TRPS1-RD and almost complete loss of the repressive properties of TRPS1. These results identify SUMOylation at the TRPS1-RD as a major mechanism that regulates the function of TRPS1.

:

Corresponding author

References

Adamson, A.L. and Kenney, S. (2001). Epstein-Barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J. Virol.75, 2388–2399.10.1128/JVI.75.5.2388-2399.2001Search in Google Scholar PubMed PubMed Central

Bies, J., Markus, J., and Wolff, L. (2002). Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J. Biol. Chem.277, 8999–9009.10.1074/jbc.M110453200Search in Google Scholar PubMed

Chakrabarti, S.R., Sood, R., Nandi, S., and Nucifora, G. (2000). Posttranslational modification of TEL and TEL/AML1 by SUMO-1 and cell-cycle-dependent assembly into nuclear bodies. Proc. Natl. Acad. Sci. USA97, 13281–13285.10.1073/pnas.240315897Search in Google Scholar PubMed PubMed Central

Comerford, K.M., Leonard, M.O., Karhausen, J., Carey, R., Colgan, S.P., and Taylor, C.T. (2003). Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc. Natl. Acad. Sci. USA100, 986–991.10.1073/pnas.0337412100Search in Google Scholar PubMed PubMed Central

David, G., Neptune, M.A., and DePinho, R.A. (2002). SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J. Biol. Chem.277, 23658–23663.10.1074/jbc.M203690200Search in Google Scholar PubMed

Gill, G. (2003). Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr. Opin. Genet. Dev.13, 108–113.10.1016/S0959-437X(03)00021-2Search in Google Scholar

Giniger, E., Varnum, S.M., and Ptashne, M. (1985). Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell40, 767–774.10.1016/0092-8674(85)90336-8Search in Google Scholar PubMed

Girdwood, D., Bumpass, D., Vaughan, O.A., Thain, A., Anderson, L.A., Snowden, A.W., Garcia-Wilson, E., Perkins, N.D., and Hay, R.T. (2003). p300 transcriptional repression is mediated by SUMO modification. Mol. Cell11, 1043–1054.10.1016/S1097-2765(03)00141-2Search in Google Scholar

Gomez-del Arco, P., Koipally, J., and Georgopoulos, K. (2005). Ikaros SUMOylation: switching out of repression. Mol. Cell. Biol.25, 2688–2697.10.1128/MCB.25.7.2688-2697.2005Search in Google Scholar PubMed PubMed Central

Hahn, S.L., Criqui, P., and Wasylyk, B. (1997). Modulation of ETS-1 transcriptional activity by huUBC9, a ubiquitin-conjugating enzyme. Oncogene15, 1489–1495.10.1038/sj.onc.1201301Search in Google Scholar PubMed

Hietakangas, V., Ahlskog, J.K., Jakobsson, A.M., Hellesuo, M., Sahlberg, N.M., Holmberg, C.I., Mikhailov, A., Palvimo, J.J., Pirkkala, L., and Sistonen, L. (2003). Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell. Biol.23, 2953–2968.10.1128/MCB.23.8.2953-2968.2003Search in Google Scholar PubMed PubMed Central

Hirano, Y., Murata, S., Tanaka, K., Shimizu, M., and Sato, R. (2003). Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. J. Biol. Chem.278, 16809–16819.10.1074/jbc.M212448200Search in Google Scholar PubMed

Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G., and Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141.10.1038/nature00991Search in Google Scholar PubMed

Hong, Y., Rogers, R., Matunis, M.J., Mayhew, C.N., Goodson, M.L., Park-Sarge, O.K., Sarge, K.D., and Goodson, M. (2001). Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J. Biol. Chem.276, 40263–40267.10.1074/jbc.M104714200Search in Google Scholar PubMed

Jang, M.S., Ryu, S.W., and Kim, E. (2002). Modification of Daxx by small ubiquitin-related modifier-1. Biochem. Biophys. Res. Commun.295, 495–500.10.1016/S0006-291X(02)00699-XSearch in Google Scholar

Johnson, E.S. (2004). Protein modification by sumo. Annu. Rev. Biochem.73, 355–382.10.1146/annurev.biochem.73.011303.074118Search in Google Scholar PubMed

Johnson, E.S. and Blobel, G. (1997). Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem.272, 26799–26802.10.1074/jbc.272.43.26799Search in Google Scholar PubMed

Johnson, E.S. and Gupta, A.A. (2001). An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell106, 735–744.10.1016/S0092-8674(01)00491-3Search in Google Scholar

Johnson, E.S., Schwienhorst, I., Dohmen, R.J., and Blobel, G. (1997). The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J.16, 5509–5519.10.1093/emboj/16.18.5509Search in Google Scholar PubMed PubMed Central

Kagey, M.H., Melhuish, T.A., and Wotton, D. (2003). The polycomb protein Pc2 is a SUMO E3. Cell113, 127–137.10.1016/S0092-8674(03)00159-4Search in Google Scholar PubMed

Kahyo, T., Nishida, T., and Yasuda, H. (2001). Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell8, 713–718.10.1016/S1097-2765(01)00349-5Search in Google Scholar PubMed

Kaiser, F.J., Moroy, T., Chang, G.T., Horsthemke, B., and Ludecke, H.J. (2003a). The RING finger protein RNF4, a co-regulator of transcription, interacts with the TRPS1 transcription factor. J. Biol. Chem.278, 38780–38785.10.1074/jbc.M306259200Search in Google Scholar PubMed

Kaiser, F.J., Tavassoli, K., Van den Bemd, G.J., Chang, G.T., Horsthemke, B., Moroy, T., and Ludecke, H.J. (2003b). Nuclear interaction of the dynein light chain LC8a with the TRPS1 transcription factor suppresses the transcriptional repression activity of TRPS1. Hum. Mol. Genet.12, 1349–1358.10.1093/hmg/ddg145Search in Google Scholar PubMed

Kamitani, T., Kito, K., Nguyen, H.P., Wada, H., Fukuda-Kamitani, T., and Yeh, E.T. (1998). Identification of three major sentrinization sites in PML. J. Biol. Chem.273, 26675–26682.10.1074/jbc.273.41.26675Search in Google Scholar PubMed

Kim, K.I., Baek, S.H., and Chung, C.H. (2002). Versatile protein tag, SUMO: its enzymology and biological function. J. Cell. Physiol.191, 257–268.10.1002/jcp.10100Search in Google Scholar PubMed

Kirsh, O., Seeler, J.S., Pichler, A., Gast, A., Muller, S., Miska, E., Mathieu, M., Harel-Bellan, A., Kouzarides, T., Melchior, F., et al. (2002). The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J.21, 2682–2691.10.1093/emboj/21.11.2682Search in Google Scholar PubMed PubMed Central

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685.10.1038/227680a0Search in Google Scholar PubMed

Lin, X., Sun, B., Liang, M., Liang, Y.Y., Gast, A., Hildebrand, J., Brunicardi, F.C., Melchior, F., and Feng, X.H. (2003). Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol. Cell11, 1389–1396.10.1016/S1097-2765(03)00175-8Search in Google Scholar

Malik, T.H., Shoichet, S.A., Latham, P., Kroll, T.G., Peters, L.L., and Shivdasani, R.A. (2001). Transcriptional repression and developmental functions of the atypical vertebrate GATA protein TRPS1. EMBO J.20, 1715–1725.10.1093/emboj/20.7.1715Search in Google Scholar PubMed PubMed Central

Miyauchi, Y., Yogosawa, S., Honda, R., Nishida, T., and Yasuda, H. (2002). Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J. Biol. Chem.277, 50131–50136.10.1074/jbc.M208319200Search in Google Scholar PubMed

Mo, Y.Y., Yu, Y., Ee, P.L., and Beck, W.T. (2004). Overexpression of a dominant-negative mutant Ubc9 is associated with increased sensitivity to anticancer drugs. Cancer Res.64, 2793–2798.10.1158/0008-5472.CAN-03-2410Search in Google Scholar PubMed

Momeni, P., Glockner, G., Schmidt, O., von Holtum, D., Albrecht, B., Gillessen-Kaesbach, G., Hennekam, R., Meinecke, P., Zabel, B., Rosenthal, A., et al. (2000). Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat. Genet.24, 71–74.10.1038/71717Search in Google Scholar PubMed

Muller, S., Ledl, A., and Schmidt, D. (2004). SUMO: a regulator of gene expression and genome integrity. Oncogene23, 1998–2008.10.1038/sj.onc.1207415Search in Google Scholar PubMed

Petrie, K., Guidez, F., Howell, L., Healy, L., Waxman, S., Greaves, M., and Zelent, A. (2003). The histone deacetylase 9 gene encodes multiple protein isoforms. J. Biol. Chem.278, 16059–16072.10.1074/jbc.M212935200Search in Google Scholar PubMed

Pichler, A., Gast, A., Seeler, J.S., Dejean, A., and Melchior, F. (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell108, 109–120.10.1016/S0092-8674(01)00633-XSearch in Google Scholar PubMed

Poukka, H., Aarnisalo, P., Karvonen, U., Palvimo, J.J., and Jänne, O.A. (1999). Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J. Biol. Chem.274, 19441–19446.10.1074/jbc.274.27.19441Search in Google Scholar PubMed

Rodriguez, M.S., Dargemont, C., and Hay, R.T. (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem.276, 12654–12659.10.1074/jbc.M009476200Search in Google Scholar PubMed

Ross, S., Best, J.L., Zon, L.I., and Gill, G. (2002). SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell10, 831–842.10.1016/S1097-2765(02)00682-2Search in Google Scholar PubMed

Rui, H.L., Fan, E., Zhou, H.M., Xu, Z., Zhang, Y., and Lin, S.C. (2002). SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. J. Biol. Chem.277, 42981–42986.10.1074/jbc.M208099200Search in Google Scholar PubMed

Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F., and Grosschedl, R. (2001). PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev.15, 3088–3103.10.1101/gad.944801Search in Google Scholar PubMed PubMed Central

Sampson, D.A., Wang, M., and Matunis, M.J. (2001). The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem.276, 21664–21669.10.1074/jbc.M100006200Search in Google Scholar PubMed

Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., and Suske, G. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J.21, 5206–5215.10.1093/emboj/cdf510Search in Google Scholar PubMed PubMed Central

Schmidt, D. and Muller, S. (2002). Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl. Acad. Sci. USA99, 2872–2877.10.1073/pnas.052559499Search in Google Scholar PubMed PubMed Central

Shoichet, S.A., Malik, T.H., Rothman, J.H., and Shivdasani, R.A. (2000). Action of the Caenorhabditis elegans GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates. Proc. Natl. Acad. Sci. USA97, 4076–4081.10.1073/pnas.97.8.4076Search in Google Scholar PubMed PubMed Central

Tatham, M.H., Jaffray, E., Vaughan, O.A., Desterro, J.M., Botting, C.H., Naismith, J.H., and Hay, R.T. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem.276, 35368–35374.10.1074/jbc.M104214200Search in Google Scholar PubMed

Tong, H., Hateboer, G., Perrakis, A., Bernards, R., and Sixma, T.K. (1997). Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem.272, 21381–21387.10.1074/jbc.272.34.21381Search in Google Scholar PubMed

Ungureanu, D., Vanhatupa, S., Kotaja, N., Yang, J., Aittomaki, S., Janne, O.A., Palvimo, J.J., and Silvennoinen, O. (2003). PIAS proteins promote SUMO-1 conjugation to STAT1. Blood102, 3311–3313.10.1182/blood-2002-12-3816Search in Google Scholar PubMed

Verger, A., Perdomo, J., and Crossley, M. (2003). Modification with SUMO.A role in transcriptional regulation. EMBO Rep.4, 137–142.10.1038/sj.embor.embor738Search in Google Scholar PubMed PubMed Central

Wang, J., Feng, X.H., and Schwartz, R.J. (2004). SUMO-1 modification activated GATA4-dependent cardiogenic gene activity. J. Biol. Chem.279, 49091–49098.10.1074/jbc.M407494200Search in Google Scholar PubMed

Weger, S., Hammer, E., and Engstler, M. (2003). The DNA topoisomerase I binding protein topors as a novel cellular target for SUMO-1 modification: characterization of domains necessary for subcellular localization and sumolation. Exp. Cell Res.290, 13–27.10.1016/S0014-4827(03)00292-1Search in Google Scholar PubMed

Weger, S., Hammer, E., and Heilbronn, R. (2004). SUMO-1 modification regulates the protein stability of the large regulatory protein Rep78 of adeno-associated virus type 2 (AAV-2). Virology330, 284–294.10.1016/j.virol.2004.09.028Search in Google Scholar PubMed

Xirodimas, D.P., Chisholm, J., Desterro, J.M., Lane, D.P., and Hay, R.T. (2002). P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2. FEBS Lett.528, 207–211.10.1016/S0014-5793(02)03310-0Search in Google Scholar PubMed

Yamamoto, H., Ihara, M., Matsuura, Y., and Kikuchi, A. (2003). Sumoylation is involved in β-catenin-dependent activation of Tcf-4. EMBO J.22, 2047–2059.10.1093/emboj/cdg204Search in Google Scholar PubMed PubMed Central

Yang, S.H., Jaffray, E., Hay, R.T., and Sharrocks, A.D. (2003). Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol. Cell12, 63–74.10.1016/S1097-2765(03)00265-XSearch in Google Scholar

Yang, S.H. and Sharrocks, A.D. (2004). SUMO promotes HDAC-mediated transcriptional repression. Mol. Cell13, 611–617.10.1016/S1097-2765(04)00060-7Search in Google Scholar

Yasugi, T. and Howley, P.M. (1996). Identification of the structural and functional human homolog of the yeast ubiquitin conjugating enzyme UBC9. Nucleic Acids Res.24, 2005–2010.10.1093/nar/24.11.2005Search in Google Scholar PubMed PubMed Central

Published Online: 2007-03-28
Published in Print: 2007-04-01

©2007 by Walter de Gruyter Berlin New York

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2007.051/html
Scroll to top button