Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 9, 2006

The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidence in various experimental animal models of type 1 and type 2 diabetic neuropathy

  • Bichoy H. Gabra , Nathalie Berthiaume , Pierre Sirois , François Nantel and Bruno Battistini
From the journal Biological Chemistry

Abstract

Both insulin-dependent (type 1) and insulin-independent (type 2) diabetes are complex disorders characterized by symptomatic glucose intolerance due to either defective insulin secretion, insulin action or both. Unchecked hyperglycemia leads to a series of complications among which is painful diabetic neuropathy, for which the kinin system has been implicated. Here, we review and compare the profile of several experimental models of type 1 and 2 diabetes (chemically induced versus gene-prone) and the incidence of diabetic neuropathy upon aging. We discuss the efficacy of selective antagonists of the inducible bradykinin B1 receptor (BKB1-R) subtype against hyperalgesia assessed by various nociceptive tests. In either gene-prone models of type 1 and 2 diabetes, the incidence of hyperalgesia mostly precedes the development of hyperglycemia. The administration of insulin, achieving euglycemia, does not reverse hyperalgesia. Treatment with a selective BKB1-R antagonist does not affect basal nociception in most normal control rats, whereas it induces a significant time- and dose-dependent attenuation of hyperalgesia, or even restores nociceptive responses, in experimental diabetic neuropathy models. Diabetic hyperalgesia is absent in streptozotocin-induced type 1 diabetic BKB1-R knockout mice. Thus, selective antagonism of the inducible BKB1-R subtype may constitute a novel and potential therapeutic approach for the treatment of painful diabetic neuropathy.

:

Corresponding author

References

Aley, K.O. and Levine, J.D. (2001). Rapid onset pain induced by intravenous streptozotocin in the rat. Pain2, 146–150.10.1054/jpai.2001.21592Search in Google Scholar

Allogho, S.N., Gobeil, F., Pheng, L.H., Nguyen-Le, X.K., Neugebauer, W., and Regoli, D. (1995). Kinin B1 and B2 receptors in the mouse. Can. J. Physiol. Pharmacol.73, 1759–1764.10.1139/y95-240Search in Google Scholar

Aronin, N., Leeman, S.E., and Clements, R.S. (1987). Diminished flare response in neuropathic patients: comparison of effects of substance P, histamine and capsaicin. Diabetes36, 1139–1143.10.2337/diab.36.10.1139Search in Google Scholar

Aubel, B., Kayser, V., Mauborgne, A., Farre, A., Hamon, M., and Bourgoin, S. (2004). Antihyperalgesic effects of cizolirtine in diabetic rats: behavioral and biochemical studies. Pain110, 22–32.10.1016/j.pain.2004.03.001Search in Google Scholar

Basbaum, A.I. and Fields, H.L. (1984). Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci.7, 309–338.10.1146/annurev.ne.07.030184.001521Search in Google Scholar

Benoit, S.R., Fleming, R., Philis-Tsimikas, A., and Ji, M. (2005). Predictors of glycemic control among patients with type 2 diabetes: a longitudinal study. BMC Public Health175, 36.10.1186/1471-2458-5-36Search in Google Scholar

Boulton, A.J. and Ward, J.D. (1986). Diabetic neuropathies and pain. Clin. Endocrinol. Metab.15, 917–931.10.1016/S0300-595X(86)80080-9Search in Google Scholar

Bryborn, M., Adner, M., and Cardell, L.O. (2004). Interleukin-4 increases murine airway response to kinins, via up-regulation of bradykinin B1-receptors and altered signalling along mitogen-activated protein kinase pathways. Clin. Exp. Allergy34, 1291–1298.10.1111/j.1365-2222.2004.02031.xSearch in Google Scholar PubMed

Calcutt, N.A. (2002). Future treatments for diabetic neuropathy: clues from experimental neuropathy. Curr. Diab. Rep.2, 482–488.10.1007/s11892-002-0117-zSearch in Google Scholar PubMed

Calcutt, N.A. (2004). Experimental models of painful diabetic neuropathy. J. Neurol. Sci.220, 137–139.10.1016/j.jns.2004.03.015Search in Google Scholar PubMed

Calcutt, N.A., Jorge, M.C., Yaksh, T.L., and Chaplan, S.R. (1996). Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain68, 293–299.10.1016/S0304-3959(96)03201-0Search in Google Scholar

Cameron, N.E., Jack, A.M., and Cotter, M.A. (2001). Effect of α-lipoic acid on vascular responses and nociception in diabetic rats. Free Radic. Biol. Med.31, 125–135.10.1016/S0891-5849(01)00564-0Search in Google Scholar

Campbell, D.J., Kelly, D.J., Wilkinson-Berka, J.L., Cooper, M.E., and Skinner, S.L. (1999). Increased bradykinin and normal angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen-2) 27 rats. Kidney Int.56, 211–221.10.1046/j.1523-1755.1999.00519.xSearch in Google Scholar

Campos, M.M., Souza, G.E., and Calixto, J.B. (1999). In vivo B1 kinin-receptor up-regulation. Evidence for involvement of protein kinases and nuclear factor κB pathways. Br. J. Pharmacol.127, 1851–1859.Search in Google Scholar

Chai, K.X., Ni, A., Wang, D., Ward, D.C., Chao, J., and Chao, L. (1996). Genomic DNA sequence, expression, and chromosomal localization of the human B1 bradykinin receptor gene BDKRB1. Genomics31, 51–57.10.1006/geno.1996.0008Search in Google Scholar

Chappel, C.I. and Chappel, W.R. (1983). The discovery and development of the BB rat colony: an animal model of spontaneous diabetes mellitus. Metabolism32 (Suppl. 1), 8–10.10.1016/S0026-0495(83)80004-3Search in Google Scholar

Cloutier, F. and Couture, R. (2000). Pharmacological characterization of the cardiovascular responses elicited by kinin B1 and B2 receptor agonists in the spinal cord of streptozotocin-diabetic rats. Br. J. Pharmacol.130, 375–385.10.1038/sj.bjp.0703319Search in Google Scholar

Coderre, T.J. and Rollman, G.B. (1983). Naloxone hyperalgesia and stress-induced analgesia in rats. Life Sci.32, 2139–2146.10.1016/0024-3205(83)90103-0Search in Google Scholar

Courteix, C., Eschalier, A., and Lavarenne, J. (1993). Streptozotocin induced diabetic rats: behavioural evidence for a model of chronic pain. Pain53, 81–88.10.1016/0304-3959(93)90059-XSearch in Google Scholar

Couture, R., Harrisson, M., Vianna, R.M., and Cloutier, F. (2001). Kinin receptors in pain and inflammation. Eur. J. Pharmacol.429, 161–176.10.1016/S0014-2999(01)01318-8Search in Google Scholar

D'Amour, F.E. and Smith, D.L. (1941). A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther.72, 74–79.Search in Google Scholar

Décarie, A., Adam, A., and Couture, R. (1996). Effects of captopril and Icatibant on bradykinin (BK) and des [Arg9] BK in carrageenan-induced oedema. Peptides17, 1009–1015.Search in Google Scholar

Dray, A. and Perkins, M. (1997). Kinins and pain. In: The Kinin System, S. Farmer, ed. (San Diego, USA: Academic Press), pp. 157–172.10.1016/B978-012249340-9/50011-5Search in Google Scholar

Eaton, M. (2003). Common animal models for spasticity and pain. J. Rehab. Res. Dev.40, 41–54.10.1682/JRRD.2003.08.0041Search in Google Scholar

Eddy, N.P. and Leimbach, D. (1953). Synthetic analgesics (II), dithienylbutenyl and dithienylbutylamines. J. Pharmacol. Exp. Ther.107, 385–389.Search in Google Scholar

Etgen, G.J. and Oldham, B.A. (2000). Profiling of Zucker diabetic fatty rats in their progression to overt diabetic state. Metabolism49, 684–688.10.1016/S0026-0495(00)80049-9Search in Google Scholar

Farmer, S.G., McMillan, B.A., Meeker, S.N., and Burch, R.M. (1991). Induction of vascular smooth muscle bradykinin B1 receptors in vivo during antigen arthritis. Agents Actions34, 191–193.10.1007/BF01993275Search in Google Scholar

Faussner, A., Bathon, J.M., and Proud, D. (1999). Comparison of the responses of B1 and B2 kinin receptors to agonist stimulation. Immunopharmacology45, 13–20.10.1016/S0162-3109(99)00052-1Search in Google Scholar

Ferreira, J., Campos, M.M., Araujo, R., Bader, M., Pesquero, J.B., and Calixto, J.B. (2002). The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level. Neuropharmacology43, 1188–1197.10.1016/S0028-3908(02)00311-8Search in Google Scholar

Fields, H.L. and Levine, J.D. (1984). Pain mechanics and management. West. J. Med.1141, 347–357.Search in Google Scholar

Fox, A., Kaur, S., Li, B., Panesar, M., Saha, U., Davis, C., Dragoni, I., Colley, S., Ritchie, T., Bevan, S., et al. (2005). Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor. Br. J. Pharmacol.144, 889–899.10.1038/sj.bjp.0706139Search in Google Scholar

Gabbay, K.H. (2004). Aldose reductase inhibition in the treatment of diabetic neuropathy: where are we in 2004? Curr. Diab. Rep.4, 405–408.10.1007/s11892-004-0047-zSearch in Google Scholar

Gabra, B.H. and Sirois, P. (2002). Role of kinin B1 receptors in diabetes-induced hyperalgesia in streptozotocin-treated mice. Eur. J. Pharmacol.457, 115–124.10.1016/S0014-2999(02)02658-4Search in Google Scholar

Gabra, B.H. and Sirois, P. (2003a). Kinin B1 receptor antagonists inhibit diabetes-mediated hyperalgesia in mice. Neuropeptides37, 36–44.10.1016/S0143-4179(02)00148-8Search in Google Scholar

Gabra, B.H. and Sirois, P. (2003b). Beneficial effect of chronic treatment with the selective bradykinin B1 receptor antagonists, R-715 and R-954, in attenuating streptozotocin-diabetic thermal hyperalgesia in mice. Peptides24, 1131–1139.10.1016/j.peptides.2003.06.003Search in Google Scholar PubMed

Gabra, B.H. and Sirois, P. (2004). Pathways for the bradykinin B1 receptor-mediated diabetic hyperalgesia in mice. Inflamm. Res.53, 653–657.10.1007/s00011-004-1310-0Search in Google Scholar

Gabra, B.H. and Sirois, P. (2005). Hyperalgesia in non-obese diabetic (NOD) mice: a role for the inducible bradykinin B1 receptor. Eur. J. Pharmacol.514, 61–67.10.1016/j.ejphar.2005.03.018Search in Google Scholar

Gabra, B.H., Merino, V.F., Bader, M., Pesquero, J.B., and Sirois, P. (2005a). Absence of diabetic hyperalgesia in bradykinin B1 receptor-knockout mice. Regul. Pept.127, 245–248.10.1016/j.regpep.2004.12.003Search in Google Scholar

Gabra, B.H., Benrezzak, O., Pheng, L-H., Duta, D., Daull, P., Sirois, P., Nantel, F., and Battistinin B. (2005b). Inhibition of type 1 diabetic hyperalgesia in streptozotocin-induced Wistar versus spontaneous gene-prone BB/Worcester rats: efficacy of a selective bradykinin B1 receptor antagonist. J. Neuropathol. Exp. Neurol.64, 1–8.10.1097/01.jnen.0000178448.79713.5fSearch in Google Scholar

Gobeil, F., Charland S., Filteau C., Perron, S.I., Neugebauer, W., and Regoli, D. (1999). Kinin B1 receptor antagonists containing α-methyl-L-Phenylalanine: in vitro and in vivo antagonistic activities. Hypertension33, 823–829.10.1161/01.HYP.33.3.823Search in Google Scholar

Goldstein, D.J., Lu, Y., Detke, M.J., Lee, T.C., and Iyengar, S. (2005). Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain116, 109–118.Search in Google Scholar

Gougat, J., Ferrari, B., Sarran, L., Planchenault, C., Poncelet, M., Maruani, J., Alonso, R., Cudennec, A., Croci, T., Guagnini, F., et al. (2004). SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[6-methoxy-2-naphthyl)sulfonyl]aminopropanoyl)amino]-3-(4-2R,6S)-2,6-dimethylpiperidinyl]methylphenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther.309, 661–669.10.1124/jpet.103.059527Search in Google Scholar

Hagiwara, M., Murakami, H., Ura, N., Agata, J., Yoshida, H., Higashiura, K., Shimamoto, K. (2004). Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertens. Res.27, 399–408.10.1291/hypres.27.399Search in Google Scholar

Hamada, Y. and Nakamura, J. (2004). Clinical potential of aldose reductase inhibitors in diabetic neuropathy. Treat Endocrinol.3, 245–255.10.2165/00024677-200403040-00006Search in Google Scholar

Hanson, W.L., McCullough, R.G., Selig, W.M., Wieczorek, M., Ross, S., Whalley, E.T., Stewart, J.M., and Gera, L. (1996). In vivo pharmacological profile of novel, potent, stable BK antagonists at B1 and B2 receptors. Immunopharmacology33, 191–193.10.1016/0162-3109(96)00037-9Search in Google Scholar

Hargreaves, K.M., Dubner, R., Brown, F., Flores, C., and Joris, J. (1988). A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain32, 77–88.10.1016/0304-3959(88)90026-7Search in Google Scholar

Harvey, J.N. (2003). Trends in the prevalence of diabetic nephropathy in type 1 and type 2 diabetes. Curr. Opin. Nephrol. Hypertens.12, 317–322.10.1097/00041552-200305000-00015Search in Google Scholar

Heger, S., Maier, C., Otter, K., Helwig, U., Suttorp, M., and Berger, A. (1999). Lesson of the week: morphine induced allodynia in a child with brain tumour: what is allodynia? Br. Med. J.319, 627–629.10.1136/bmj.319.7210.627Search in Google Scholar

Ho, E., Quan, N., Tsai, Y.H., Lai, W., and Bray, T.M. (2001). Dietary zinc supplementation inhibits NF-kB activation and protects against chemically induced diabetes in CD1 mice. Exp. Biol. Med. (Maywood)226, 103–111.10.1177/153537020122600207Search in Google Scholar

Horlick, R.A., Ohlmeyer, M.H., Stroke, I.L., Strohl, B., Pan, G., et al. (1999). Small molecule antagonists of the bradykinin B1 receptor. Immunopharmacology43, 169–177.10.1016/S0162-3109(99)00130-7Search in Google Scholar

Irwin, S., Houde, R.W., Bennett, D.R., Hendershot, L.C., and Seevers, M.H. (1951). The effects of morphine methadone and meperidine on some reflex responses of spinal animals to nociceptive stimulation. J. Pharmacol. Exp. Ther.101, 132–143.Search in Google Scholar

Kim, J.Y., Chi, J.K., Kim, E.J., Park, S.Y., Kim, Y.W., and Lee, S.K. (1997). Inhibition of diabetes in non-obese diabetic mice by nicotinamide treatment for 5 weeks at the early age. J. Korean Med. Sci.12, 293–297.10.3346/jkms.1997.12.4.293Search in Google Scholar PubMed PubMed Central

Koyama, S., Sato, E., Numanami, H., Kubo, K., Nagai, S., and Izumi, T. (2000). Bradykinin stimulates lung fibroblasts to release neutrophil and monocyte chemotactic activity. Am. J. Respir. Cell Mol. Biol.22, 75–84.10.1165/ajrcmb.22.1.3752Search in Google Scholar PubMed

Lang, J. and Bellgrau, D. (2004). Animal models of type 1 diabetes: genetics and immunological function. Adv. Exp. Med. Biol.552, 91–116.Search in Google Scholar

Larrivée, J.F., Bachvarov, D.R., Houle, F., Landry, J., Huot, J., and Marceau, F. (1998). Role of the mitogen-activated protein kinases in the expression of the kinin B1 receptors induced by tissue injury. J. Immunol.160, 1419–1426.10.4049/jimmunol.160.3.1419Search in Google Scholar

Lawson, S.R., Gabra, B.H., Guérin, B., Neugebauer, W., Nantel, F., Battistini, B., and Sirois, P. (2005a). Enhanced dermal and retinal vascular permeability in streptozotocin-induced type 1 diabetes in Wistar rats: blockade with a selective bradykinin B1 receptor antagonist. Regul. Pept.124, 221–224.10.1016/j.regpep.2004.09.002Search in Google Scholar PubMed

Lawson, S.R., Gabra, B.H., Nantel, F., Battistini, B., and Sirois, P. (2005b). Effects of selective bradykinin B1 receptor antagonist on increased plasma extravasation in streptozotocin-induced diabetic rats: Distinct vasculopathic profile of major key organs. Eur. J. Pharmacol.514, 69–78.10.1016/j.ejphar.2005.03.023Search in Google Scholar PubMed

Le Bars, D., Gozariu, M., and Cadden, S.W. (2001). Animal models of nociception. Pharmacol. Rev.53, 597–652.Search in Google Scholar

Leeb-Lundberg, L.M., Marceau, F., Müller-Esterl, W., Pettibone, D.J., and Zuraw, B.L. (2005). International Union of Pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev.57, 27–77.Search in Google Scholar

Like, A.A., Guberski, D.L., and Butler, L. (1986). Diabetic BioBreeding/Worcester (BB/Wor) rats need not be lymphopenic. J. Immunol.136, 3254–3258.10.4049/jimmunol.136.9.3254Search in Google Scholar

Mage, M., Pecher, C., Neau, E., Cellier, E., Dos Reiss, M.L., Schanstra, J.P., Couture, R., Bascands, J.L., and Girolami, J.P. (2002). Induction of B1 receptors in streptozotocin diabetic rats: possible involvement in the control of hyperglycemia-induced glomerular Erk 1 and 2 phosphorylation. Can. J. Physiol. Pharmacol.80, 328–333.10.1139/y02-024Search in Google Scholar PubMed

Malik, R.A. (2003). Current and future strategies for the management of diabetic neuropathy. Treat. Endocrinol.2, 389–400.10.2165/00024677-200302060-00003Search in Google Scholar PubMed

Mantione, C.R. and Rodriguez, R. (1990). A bradykinin (BK)1 receptor antagonist blocks capsaicin-induced ear inflammation in mice. Br. J. Pharmacol.99, 516518.10.1111/j.1476-5381.1990.tb12960.xSearch in Google Scholar PubMed PubMed Central

Marceau, F. and Regoli, D. (2004). Bradykinin receptor ligands: therapeutic perspectives. Nat. Rev. Drug Discov.3, 845–852.10.1038/nrd1522Search in Google Scholar PubMed

Marceau, F., Hess, J.F., and Bacharov, D.R. (1998). The B1 receptors for kinins. Pharmacol. Rev.50, 357–386.Search in Google Scholar

Mason, G.S., Cumberbatch, M.J., Hill, R.G., and Rupniak, N.M. (2002). The bradykinin B1 receptor antagonist B9858 inhibits a nociceptive spinal reflex in rabbits. Can. J. Physiol. Pharmacol.80, 264–268.10.1139/y02-049Search in Google Scholar PubMed

Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Okazaki, H., and Tamura, Y. (2004). Insulin-independent induction of sterol regulatory element binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes53, 560–569.10.2337/diabetes.53.3.560Search in Google Scholar PubMed

Melzack, R. and Wall, P.D. (1965). Pain mechanism: a new theory. Science150, 971–979.10.1126/science.150.3699.971Search in Google Scholar PubMed

Nakhooda, A.F., Like, A.A., Chappel, C.I., Murray, F.T., and Marliss, E.B. (1977). The spontaneously diabetic Wistar rat. Metabolic and morphologic studies. Diabetes26, 100–112.Search in Google Scholar

Nantel, F., Daull, P., Berthiaume, N., Duta, D.N., Blouin, A., Cayer, J., Beaudoin, M., Belleville, K., Benrezzak, O., Sirois, P., and Battistini, B. (2005). Integrated in vivo pharmacology using an instrumented, unrestrained and conscious rat platform: application to rat models of diabetes. J. Pharmacol. Toxicol. Methods, electronic publication (doi: 10.1016/j.vascn.2005.09.005).Search in Google Scholar

Necker, R. and Hellon, R.F. (1978). Noxious thermal input from the rat tail: modulation by descending inhibitory influences. Pain4, 231–242.Search in Google Scholar

Neugebauer, W., Blais, P.A., Halle, S., Filteau, C., Regoli, D., and Gobeil, F. (2002). Kinin B1 receptor antagonists with multi-enzymatic resistance properties. Can. J. Physiol. Pharmacol.80, 287–292.10.1139/y02-053Search in Google Scholar PubMed

Ongali, B., Campos, M.M., Petcu, M., Rodi, D., Cloutier, F., Chabot, J.G., Thibault, G., and Couture, R. (2004). Expression of kinin B1 receptors in the spinal cord of streptozotocin-diabetic rat. NeuroReport15, 2463–2466.10.1097/00001756-200411150-00006Search in Google Scholar PubMed

Ozansoy, G., Akin, B., Aktan, F., and Karasu, C. (2001). Short-term gemfibrozil treatment reverses lipid profile and peroxidation but does not alter blood glucose and tissue antioxidant enzymes in chronically diabetic rats. Mol. Cell. Biochem.216, 59–63.10.1023/A:1011000327529Search in Google Scholar

Park, T.S., Park, J.H., and Baek, H.S. (2004). Can diabetic neuropathy be prevented? Diabetes Res. Clin. Pract.66, S53–S56.Search in Google Scholar

Pesquero, J.B., Araujo, R.C., Heppenstall, P.A., Stucky, C.L., Silva, J.A. Jr., Walther, T., Oliveira, S.M., Pesquero, J.L., Paiva, A.C., Calixto, J.B., et al. (2000). Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc. Natl. Acad. Sci. USA97, 8140–8145.10.1073/pnas.120035997Search in Google Scholar PubMed PubMed Central

Pfeifer, M.A. and Schumer, M.P. (1995). Clinical trials of diabetic neuropathy: past, present, and future. Diabetes44, 1355–1361.10.2337/diab.44.12.1355Search in Google Scholar PubMed

Phagoo, S.B., Poole, S., and Leeb-Lundberg, L.M. (1999). Auto-regulation of bradykinin receptors: agonists in the presence of interleukin-1β shift the repertoire of receptor subtypes from B2 to B1 in human lung fibroblasts. Mol. Pharmacol.56, 325–333.10.1124/mol.56.2.325Search in Google Scholar

Pheng, L.H., Nguyen-Le, X.K., Nsa Allogho, S., Gobeil, F., and Regoli, D. (1997). Kinin receptors in the diabetic mouse. Can. J. Physiol. Pharmacol.75, 609–611.10.1139/y97-020Search in Google Scholar

Pinhas-Hamiel, O. and Zeitler, P. (2005). The global spread of type 2 diabetes mellitus in children and adolescents. J. Pediatr.146, 693–700.10.1016/j.jpeds.2004.12.042Search in Google Scholar

Pruneau, D., Porreca, F., Vanderah, T.W., Barth, M., Dodey, P., Junien, J.L., Peyrou, V., and Luccarini, J.M. (2004). Non-peptidic B1 receptor antagonists and their actions in pain. In: Peptide Receptors Symposium, Montreal, 2004.Search in Google Scholar

Quinn, L. (2001). Type 2 diabetes: epidemiology, pathophysiology, and diagnosis. Nurs. Clin. North Am.36, 175–192.10.1016/S0029-6465(22)02543-9Search in Google Scholar

Rabinovitch, A. and Suarez-Pinzon, W.L. (1998). Cytokines and their roles in pancreatic islet β-cell destruction and insulin-dependent diabetes mellitus. Biochem. Pharmacol.55, 1139–1149.10.1016/S0006-2952(97)00492-9Search in Google Scholar

Ramabadran, K. and Bansinath, M. (1986). Naloxone-morphine synergism. Anesth. Analg.65, 1252.10.1213/00000539-198611000-00040Search in Google Scholar

Ramabadran, K., Bansinath, M., Turndorf, H., and Puig, M.M. (1989). The hyperalgesic effect of naloxone is attenuated in streptozotocin-diabetic mice. Psychopharmacology97, 169–174.10.1007/BF00442244Search in Google Scholar

Rees, D.A. and Alcolado, J.C. (2005). Animal models of diabetes mellitus. Diabet. Med.22, 359–370.10.1111/j.1464-5491.2005.01499.xSearch in Google Scholar

Regoli, D., Pheng, L.H., Allogho, S.N., Nguyen-Le, X.K., and Gobeil, F. (1996a). Receptors for kinins: from classical pharmacology to molecular biology. Immunopharmacology33, 116–122.10.1016/0162-3109(96)00025-2Search in Google Scholar

Regoli, D., Pheng, L.H., Allogho, S.N., Nguyen-Le, X.K., and Gobeil, F. (1996b). Receptors for kinins: from classical pharmacology to molecular biology. Immunopharmacology33, 24–31.10.1016/0162-3109(96)00077-XSearch in Google Scholar

Rewers, M., Norris, J., and Dabelea, D. (2004). Epidemiology of type 1 diabetes mellitus. Adv. Exp. Med. Biol.552, 219–246.Search in Google Scholar

Richter, R.W., Portenoy, R., Sharma, U., Lamoreaux, L., Bockbrader, H., and Knapp, L.E. (2005). Relief of painful diabetic peripheral neuropathy with pregabalin: a randomized, placebo-controlled trial. J. Pain6, 253–260.10.1016/j.jpain.2004.12.007Search in Google Scholar PubMed

Ritchie, T.J., Dziadulewicz, E.K., Culshaw, A.J., Muller, W., Burgess, G.M., Bloomfield, G.C. et al. (2004). Potent and orally bioavailable non-peptide antagonists a the human bradykinin B1 receptor based on a 2-alkylamino-5-sulfamoylbenzamide core. J. Med. Chem.47, 4642–4644.10.1021/jm049747gSearch in Google Scholar

Rossini, A.A., Handler, E.S., Mordes, J.P., and Greiner, D.L. (1995). Animal models of human disease. Human autoimmune diabetes mellitus: lessons from BB rats and NOD mice. Clin. Immunol. Immunopathol.74, 2–9.Search in Google Scholar

Rothschild, A., Melo, V., Reis, M., and Foss, G. Jr. (1999). Kininogen and prekallikrein increases in the blood of streptozotocin diabetic rats are normalized by insulin in vivo andin vitro. Naunyn-Schmiedeberg's Arch. Pharmacol.360, 217–220.10.1007/s002109900068Search in Google Scholar

Sardi, S.P., Ares, V.R., Errasti, A.E., and Rothlin, R.P. (1998). Bradykinin B1 receptors in human umbilical vein: pharmacological evidence of up-regulation and induction by interleukin-1β. Eur. J. Pharmacol.358, 221–227.10.1016/S0014-2999(98)00609-8Search in Google Scholar

Schanstra, J.P., Bataille, E., Marin Castano, M.E., Barascud, Y., Hirtz, C., Pesquero, J.B., Pecher, C., Gauthier, F., Girolami, J.P., and Bascands, J.L. (1998). The B1-agonist [des-Arg10]-kallidin activates transcription factor NF-κB and induces homologous up-regulation of the bradykinin B1-receptor in cultured human lung fibroblasts. J. Clin. Invest.101, 2080–2091.10.1172/JCI1359Search in Google Scholar PubMed PubMed Central

Schremmer-Danninger, E., Offner, A., Siebeck, M., and Roscher, A.A. (1998). B1 bradykinin receptors and carboxypeptidase M are both up-regulated in the aorta of pigs after LPS infusion. Biochem. Biophys. Res. Commun.243, 246–252.10.1006/bbrc.1997.7999Search in Google Scholar PubMed

Seidell, J.C. (2000). Obesity, insulin resistance and diabetes – a worldwide epidemic. Br. J. Nutr.83, S5–S8.10.1017/S000711450000088XSearch in Google Scholar

Shin, J., Cho, H., Hwang, S.W., Jung, J., Shin, C.Y., Lee, S.Y., Kim, S.H., Lee, M.G., Choi, Y.H., Kim, J., et al. (2002). Bradykin-12-lipoxygenase-VR-1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA99, 10150–10155.10.1073/pnas.152002699Search in Google Scholar PubMed PubMed Central

Simard, B., Gabra, B.H., and Sirois, P. (2002). Inhibitory effect of a novel bradykinin B1 receptor antagonist, R-954, on enhanced vascular permeability in type 1 diabetic mice. Can. J. Physiol. Pharmacol.80, 1203–1207.10.1139/y02-153Search in Google Scholar PubMed

Singh, N., Armstrong, D.G., and Lipsky, B.A. (2005). Preventing foot ulcers in patients with diabetes. JAMA293, 217–228.10.1001/jama.293.2.217Search in Google Scholar PubMed

Singh, R., Shaw, J., and Zimmet, P. (2004). Epidemiology of childhood type 2 diabetes in the developing world. Pediatr. Diabetes5, 154–168.10.1111/j.1399-543X.2004.00060.xSearch in Google Scholar PubMed

Spillmann, F., Altmann, C., Scheeler, M., Barbosa, M., Westermann, D., Schultheiss, H.P., Walther, T., and Tschope, C. (2002). Regulation of cardiac bradykinin B1 and B2-receptor mRNA in experimental ischemic, diabetic and pressure-overload-induced cardiomyopathy. Int. Immunopharmacol.2, 1823–1832.10.1016/S1567-5769(02)00174-1Search in Google Scholar

Stewart, J.M., Gera, L., York, E.J., Chan, D.C., and Bunn, P. (1999). Bradykinin antagonists: present progress and future prospects. Immunopharmacology43, 155–161.10.1016/S0162-3109(99)00102-2Search in Google Scholar

Su, D.S., Markowitz, M.K., DiPardo, R.M., Murphy, K.L., Harrell, C.M., O'Malley, S.S., et al. (2003). Discovery of a potent, non-peptide bradykinin receptor antagonist. J. Am. Chem. Soc.125, 7516–7517.10.1021/ja0353457Search in Google Scholar

Tolman, K.G., Fonseca, V., Tan, M.H., and Dalpiaz, A. (2004). Narrative review: hepatobiliary disease in type 2 diabetes mellitus. Ann. Intern. Med.141, 946–956.10.7326/0003-4819-141-12-200412210-00011Search in Google Scholar

Tschope, C., Walther, T., Yu, M., Reinecke, A., Koch, M., Seligmann, C., Heringer, S.B., Pesquero, J.B., Bader, M., Schultheiss, H., and Unger, T. (1999). Myocardial expression of rat bradykinin receptors and two tissue kallikrein genes in experimental diabetes. Immunopharmacology44, 35–42.10.1016/S0162-3109(99)00109-5Search in Google Scholar

Vianna, R.M., Ongali, B., Regoli, D., Calixto, J.B., and Couture, R. (2003). Up-regulation of kinin B1 receptor in the lung of streptozotocin-diabetic rat: autoradiographic and functional evidence. Br. J. Pharmacol.138, 13–22.10.1038/sj.bjp.0704999Search in Google Scholar

Vinik, A. and Mitchell, B. (1988). Clinical aspects of diabetic neuropathies. Diabetes Metab. Rev.4, 223–253.10.1002/dmr.5610040304Search in Google Scholar

Vinik, A.I., Holland, M.T., Le Beau, J.M., Liuzzi, F.J., Stansberry, K.B., and Colen, L.B. (1992). Diabetic neuropathies. Diabetes Care15, 1926–1975.10.2337/diacare.15.12.1926Search in Google Scholar

Viswalingam, A. and Caldwell, J. (1997). Cinnamyl anthranilate causes coinduction of hepatic microsomal and peroxisomal enzymes in mouse but not rat. Toxicol. Appl. Pharmacol.142, 338–347.10.1006/taap.1996.8043Search in Google Scholar

Walker, K., Perkins, M., and Dray, A. (1995). Kinins and kinin receptors in the nervous system. Neurochem. Int.26, 1–16.10.1016/0197-0186(94)00114-ASearch in Google Scholar

Wang, L.X. and Wang, Z.J. (2003). Animal and cellular models of chronic pain. Adv. Drug Deliv. Rev.55, 949–965.10.1016/S0169-409X(03)00098-XSearch in Google Scholar

Watson, C.P. (2000). The treatment of neuropathic pain: antidepressants and opioids. Clin. J. Pain16, S49–S55.10.1097/00002508-200006001-00009Search in Google Scholar

Winer, N. and Sowers, J.R. (2004). Epidemiology of diabetes. J. Clin. Pharmacol.44, 397–405.10.1177/0091270004263017Search in Google Scholar

Woolf, C.J. (1992). Excitability changes in central neurons following peripheral damage: role of central sensitization in the pathogenesis of pain. In: Hyperalgesia and Allodynia, W. Willis, ed. (New York, USA: Raven Press), pp. 221–243.Search in Google Scholar

Wuarin-Bierman, L., Zahnd, G.R., Kaufmann, F., Burcklen, L., and Adler, J. (1987). Hyperalgesia in spontaneous and experimental animal models of diabetic neuropathy. Diabetologia30, 653–658.10.1007/BF00277324Search in Google Scholar

Yerneni, K.K., Bai, W., Khan, B.V., Medford, R.M., and Natarajan, R. (1999). Hyperglycemia-induced activation of nuclear transcription factor κB in vascular smooth muscle cells. Diabetes48, 855–864.10.2337/diabetes.48.4.855Search in Google Scholar

Zhang, W., Slusher, B., Murakawa, Y., Wozniak, K.M., Tsukamoto, T., Jackson, P.F., and Sima, A.A. (2002). GCPII (NAALADase) inhibition prevents long-term diabetic neuropathy in type 1 diabetic BB/Wor rats. J. Neurol. Sci.194, 21–28.10.1016/S0022-510X(01)00670-0Search in Google Scholar

Zhou, X., Polgar, P., and Taylor, L. (1998). Roles for interleukin-1β, phorbol ester and a post-transcriptional regulator in the control of bradykinin B1 receptor gene expression. Biochem. J.330, 361–366.10.1042/bj3300361Search in Google Scholar

Zuccollo, A., Navarro, M., and Catanzaro, O. (1996). Effects of B1 and B2 kinin receptor antagonists in diabetic mice. Can. J. Physiol. Pharmacol.74, 586–589.10.1139/y96-047Search in Google Scholar

Zuccollo, A., Navarro, M., Frontera, M., Cueva, F., Carattino, M., and Catanzaro, O. (1999). The involvement of kallikrein-kinin system in diabetes type 1 (insulitis). Immunopharamacology45, 69–74.10.1016/S0162-3109(99)00149-6Search in Google Scholar

Published Online: 2006-02-09
Published in Print: 2006-02-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 10.6.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.018/html
Scroll to top button