Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter August 17, 2005

Genetische Diagnostik in der pädiatrischen Onkologie Genetic diagnosis in pediatric oncology

  • Oskar A. Haas
From the journal LaboratoriumsMedizin

Zusammenfassung

Die Erforschung und Analyse der mit soliden Tumoren und hämatologischen Neoplasien einhergehenden genetischen Veränderungen spielen in der pädiatrischen Onkologie schon seit langem eine sehr wichtige Rolle. Die daraus resultierende Information ist nicht nur für diagnostische und differentialdiagnostische Belange sowie die Grundlagenforschung besonders wertvoll, sondern wird auch in zunehmendem Masse zur Therapiestratifizierung und Therapieüberwachung eingesetzt. In diesem Artikel gebe ich daher einen kurzen Überblick über ältere und neuere Methoden und beschreibe deren diagnostische Wertigkeit in den jeweiligen Zusammenhängen. Das Spektrum dieser Methoden reicht von der konventionellen Zytogenetik über eine Fluoreszenz-in-situ-Hybridisierung (FISH) und vielfältige RNA- und DNA-basierende qualitative und quantitative Polymerasekettenreaktionen (PCR) bis zu RNA- und DNA- basierenden Genom-Microarray-Methoden. Weiterhin präsentiere ich kurz die häufigsten und wichtigsten genetischen Subgruppen von hämatologischen Neoplasien und soliden Tumoren im Kindesalter, zusammen mit ihrer klinischen Bedeutung. Auf Grund ihres unterschiedlichen pathogenetischen Ursprungs unterscheiden sich sowohl die Art und Häufigkeit der im Kindesalter auftretenden Neoplasien als auch die damit assoziierten genetischen Merkmale grundlegend von jenen des späten Erwachsenenalters. Die ausführliche Analyse dieser genetischen Veränderung, speziell von Tumoren und Leukämien im Kindesalter, hilft uns daher nicht nur, die physiologischen und pathophysiologischen Vorgänge, welche zur Tumorentwicklung und -progression beitragen, besser zu verstehen. Wie bereits viele eindrucksvolle Beispiele der letzten Jahre belegen, dient sie letztendlich auch dazu, völlig neue therapeutische Konzepte zu entwickeln, die eine erfolgreiche individuelle und gleichzeitig nebenwirkungsfreiere Behandlung dieser Patienten ermöglichen.

Abstract

The investigation of genetic abnormalities that concur with hematological neoplasms and solid tumors play an important role in pediatric oncology. The retrieved information is not only extremely valuable for diagnostic, differential diagnostic and basic research purposes, but it is also increasingly used for treatment stratification and therapy surveillance. With that in mind, this article surveys the various older and newer diagnostic approaches and their special value in a particular context and provides examples for their practical applications. The vast spectrum of techniques ranges from conventional cytogenetics to a plethora of fluorescence in situ hybridization (FISH), various qualitative and quantitative DNA- and RNA-based polymerase chain reaction (PCR) as well as DNA- and RNA-based microarray methods. I will also briefly describe the most common and most important genetic subgroups of hematological neoplasms and solid tumors in childhood together with their biological and clinical significance. Owing to their diverse pathogenetic origin, the type, frequency as well as genetic make-up of the vast majority of tumors in children differ significantly from those encountered in late adulthood. The comprehensive analysis of these genetic alterations particularly in childhood tumors and leukemias not only improves our understanding of the physiological and pathophysiologcial processes leading to tumor manifestation and progression, but also adds significantly to the development of new improved therapeutic concepts which lead to a better, more individualized treatment with less adverse side effects, as many impressive examples have already illustrated within the last few years.

:

Literatur

1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell2000;100:57–70.10.1016/S0092-8674(00)81683-9Search in Google Scholar

2. Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet2003;34:369–76.10.1038/ng1215Search in Google Scholar

3. Maris JM, Denny CT. Focus on embryonal malignancies. Cancer Cell2002;2:447–50.10.1016/S1535-6108(02)00206-4Search in Google Scholar

4. Perera FP. Environment and cancer: who are [sic] susceptible?Science1997;278:1068–73.10.1126/science.278.5340.1068Search in Google Scholar PubMed

5. Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer2003;3:639–49.10.1038/nrc1164Search in Google Scholar PubMed

6. Greaves MF. Biological models for leukaemia and lymphoma. IARC Sci Publ 2004:351–72.Search in Google Scholar

7. Greaves M. In utero origins of childhood leukaemia. Early Hum Dev2005;81:123–9.10.1016/j.earlhumdev.2004.10.004Search in Google Scholar PubMed

8. Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood2003;102:2321–33.10.1182/blood-2002-12-3817Search in Google Scholar PubMed

9. Wasserman R, Galili N, Ito Y, Reichard BA, Shane S, Rovera G. Predominance of fetal type DJH joining in young children with B precursor lymphoblastic leukemia as evidence for an in utero transforming event. J Exp Med1992;176:1577–81.10.1084/jem.176.6.1577Search in Google Scholar PubMed PubMed Central

10. Fasching K, Panzer S, Haas OA, Marschalek R, Gadner H, Panzer-Grümayer ER. Presence of clone-specific antigen receptor gene rearrangements at birth indicates an in utero origin of diverse types of early childhood acute lymphoblastic leukemia. Blood2000;95:2722–4.10.1182/blood.V95.8.2722.008k09_2722_2724Search in Google Scholar

11. Haas OA. Genetik und Genetische Prädisposition. In: Gadner G, Niemeyer C, Ritter J, ed. Pädiatrische Hämatologie und Onkologie. Heidelberg: Springer 2005.Search in Google Scholar

12. Singal R, Ginder GD. DNA methylation. Blood1999;93:4059–70.10.1182/blood.V93.12.4059.412k40_4059_4070Search in Google Scholar

13. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet2002;3:415–28.10.1038/nrg816Search in Google Scholar

14. Plass C, Soloway PD. DNA methylation, imprinting and cancer. Eur J Hum Genet2002;10:6–16.10.1038/sj.ejhg.5200768Search in Google Scholar

15. Feinberg AP. The epigenetics of cancer etiology. Semin Cancer Biol2004;14:427–32.10.1016/j.semcancer.2004.06.005Search in Google Scholar

16. Harrison CJ. The management of patients with leukaemia: the role of cytogenetics in this molecular era. Br J Haematol2000;108:19–30.10.1046/j.1365-2141.2000.01801.xSearch in Google Scholar

17. Trask BJ. Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet2002;3:769–78.10.1038/nrg905Search in Google Scholar

18. Kearney L, Tosi S, Jaju RJ. Detection of chromosome abnormalities in leukemia using fluorescence in situ hybridization. Methods Mol Med2002;68:7–27.Search in Google Scholar

19. Tönnies H. Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol Med2002;8:246–50.10.1016/S1471-4914(02)02335-3Search in Google Scholar

20. Harrison CJ, Kempski H, Hammond DW, Kearney L. Molecular cytogenetics in childhood leukemia. Methods Mol Med2004;91:123–37.10.1385/1-59259-433-6:123Search in Google Scholar

21. van der Burg M, Poulsen TS, Hunger SP, Beverloo HB, Smit EM, Vang-Nielsen K, et al. Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leukemia2004;18:895–908.10.1038/sj.leu.2403340Search in Google Scholar

22. Dal Cin P, Van den Berghe H. Ten years of the cytogenetics of soft tissue tumors. Cancer Genet Cytogenet1997;95:59–66.10.1016/S0165-4608(96)00271-3Search in Google Scholar

23. Mertens F, Mandahl N, Mitelman F, Heim S. Cytogenetic analysis in the examination of solid tumors in children. Pediatr Hematol Oncol1994;11:361–77.10.3109/08880019409140536Search in Google Scholar PubMed

24. Mitelman F, Johansson B, Mandahl N, Mertens F. Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet1997;95:1–8.10.1016/S0165-4608(96)00252-XSearch in Google Scholar

25. Mitelman F, Mertens F, Johansson B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet1997;15:417–74.10.1038/ng0497supp-417Search in Google Scholar

26. Attarbaschi A, Mann G, König M, Dworzak MN, Trebo MM, Mühlegger N, et al. Incidence and relevance of secondary chromosome abnormalities in childhood TEL/AML1+ acute lymphoblastic leukemia: an interphase FISH analysis. Leukemia2004;18:1611–6.10.1038/sj.leu.2403471Search in Google Scholar

27. Albertson DG, Pinkel D. Genomic microarrays in human genetic disease and cancer. Hum Mol Genet2003;12 Spec No 2:R145–52.10.1093/hmg/ddg261Search in Google Scholar

28. Klein HG, Gorinevski D, Hörmann J, Marschall C, Mayer K, Vanetti M. Gesamt-Genom-Microarray-Analyse und Target-Validierung mittels qPCR. Whole genome microarray analysis and target validation by using qPCR.28:215–24.10.1515/LabMed.2004.031Search in Google Scholar

29. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell2002;1:75–87.10.1016/S1535-6108(02)00018-1Search in Google Scholar

30. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature2002;415:436–42.10.1038/415436aSearch in Google Scholar

31. Sardi I, Tintori V, Marchi C, Veltroni M, Lippi A, Tucci F, et al. Molecular profiling of high-risk neuroblastoma by cDNA array. Int J Mol Med2002;9:541–5.10.3892/ijmm.9.5.541Search in Google Scholar

32. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell2002;1:133–43.10.1016/S1535-6108(02)00032-6Search in Google Scholar

33. Hampton GM, Frierson HF. Classifying human cancer by analysis of gene expression. Trends Mol Med2003;9:5–10.10.1016/S1471-4914(02)00006-0Search in Google Scholar

34. Bruchova H, Kalinova M, Brdicka R. Array-based analysis of gene expression in childhood acute lymphoblastic leukemia. Leuk Res2004;28:1–7.10.1016/S0145-2126(03)00120-6Search in Google Scholar

35. Chen QR, Bilke S, Wei JS, Whiteford CC, Cenacchi N, Krasnoselsky AL, et al. cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics2004;5:70.10.1186/1471-2164-5-70Search in Google Scholar PubMed PubMed Central

36. Lacayo NJ, Meshinchi S, Kinnunen P, Yu R, Wang Y, Stuber CM, et al. Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood2004;104:2646–54.10.1182/blood-2003-12-4449Search in Google Scholar PubMed

37. Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G, et al. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res2004;64:8213–21.10.1158/0008-5472.CAN-03-4059Search in Google Scholar PubMed

38. Sugimura J, Yang XJ, Tretiakova MS, Takahashi M, Kort EJ, Fulton B, et al. Gene expression profiling of mesoblastic nephroma and Wilms tumors − comparison and clinical implications. Urology2004;64:362–8;discussion 368.10.1016/j.urology.2004.04.052Search in Google Scholar PubMed

39. Lagergren A, Manetopoulos C, Axelson H, Sigvardsson M. Neuroblastoma and pre-B lymphoma cells share expression of key transcription factors but display tissue restricted target gene expression. BMC Cancer2004;4:80.10.1186/1471-2407-4-80Search in Google Scholar PubMed PubMed Central

40. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood2004;104:3679–87.10.1182/blood-2004-03-1154Search in Google Scholar PubMed

41. Teuffel O, Dettling M, Cario G, Stanulla M, Schrappe M, Buhlmann P, et al. Gene expression profiles and risk stratification in childhood acute lymphoblastic leukemia. Haematologica2004;89:801–8.Search in Google Scholar

42. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med2004;350:1617–28.10.1056/NEJMoa040465Search in Google Scholar PubMed

43. Harrison CJ. The genetics of childhood acute lymphoblastic leukaemia. Baillieres Best Pract Res Clin Haematol2000;13:427–39.10.1053/beha.2000.0086Search in Google Scholar PubMed

44. Moorman AV, Richards SM, Martineau M, Cheung KL, Robinson HM, Jalali GR, et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood2003;102:2756–62.10.1182/blood-2003-04-1128Search in Google Scholar PubMed

45. Haas OA. Biological and clinical significance of nonrandom aneuploidy patterns in childhood acute lymphoblastic leukemia (ALL). Cellular Oncol2004;26:212–5.Search in Google Scholar

46. Harrison CJ, Moorman AV, Broadfield ZJ, Cheung KL, Harris RL, Reza Jalali G, et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol2004;125:552–9.10.1111/j.1365-2141.2004.04948.xSearch in Google Scholar

47. Sutcliffe MJ, Shuster JJ, Sather HN, Camitta BM, Pullen J, Schultz KR, et al. High concordance from independent studies by the Children's Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children's Oncology Group (COG) initiative. Leukemia 2005 (in print).10.1038/sj.leu.2403673Search in Google Scholar

48. Paulsson K, Panagopoulos I, Knuutila S, Jee KJ, Garwicz S, Fioretos T, et al. Formation of trisomies and their parental origin in hyperdiploid childhood acute lymphoblastic leukemia. Blood2003;102:3010–5.10.1182/blood-2003-05-1444Search in Google Scholar

49. Ferrando AA, Look AT. Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol2000;37:381–95.10.1053/shem.2000.16447Search in Google Scholar

50. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer2003;3:203–16.10.1038/nrc1014Search in Google Scholar

51. Schwab M. Amplification of oncogenes in human cancer cells. Bioessays1998;20:473–9.10.1002/(SICI)1521-1878(199806)20:6<473::AID-BIES5>3.0.CO;2-NSearch in Google Scholar

52. Harewood L, Robinson H, Harris R, Al-Obaidi MJ, Jalali GR, Martineau M, et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia2003;17:547–53.10.1038/sj.leu.2402849Search in Google Scholar

53. Robinson HM, Broadfield ZJ, Cheung KL, Harewood L, Harris RL, Jalali GR, et al. Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia2003;17:2249–50.10.1038/sj.leu.2403140Search in Google Scholar

54. Barber KE, Martineau M, Harewood L, Stewart M, Cameron E, Strefford JC, et al. Amplification of the ABL gene in T-cell acute lymphoblastic leukemia. Leukemia2004;18:1153–6.10.1038/sj.leu.2403357Search in Google Scholar

55. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet2004;36:1084–9.10.1038/ng1425Search in Google Scholar

56. Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, et al. The Ewing family of tumors – a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med1994;331:294–9.10.1056/NEJM199408043310503Search in Google Scholar

57. Look AT. Oncogenic transcription factors in the human acute leukemias. Science1997;278:1059–64.10.1126/science.278.5340.1059Search in Google Scholar

58. Pappo AS, Shapiro DN, Crist WM. Rhabdomyosarcoma. Biology and treatment. Pediatr Clin North Am1997;44:953–72.10.1016/S0031-3955(05)70539-3Search in Google Scholar

59. Rabbitts TH. The clinical significance of fusion oncogenes in cancer [editorial; comment]. N Engl J Med1998;338:192–4.10.1056/NEJM199801153380311Search in Google Scholar

60. Bennicelli JL, Barr FG. Genetics and the biologic basis of sarcomas. Curr Opin Oncol1999;11:267–74.10.1097/00001622-199907000-00006Search in Google Scholar

61. Arico M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med2000;342:998–1006.10.1056/NEJM200004063421402Search in Google Scholar

62. Rabes HM, Demidchik EP, Sidorow JD, Lengfelder E, Beimfohr C, Hoelzel D, et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res2000;6:1093–103.Search in Google Scholar

63. Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood2000;96:808–22.10.1182/blood.V96.3.808Search in Google Scholar

64. Tomescu O, Barr FG. Chromosomal translocations in sarcomas: prospects for therapy. Trends Mol Med2001;7:554–9.10.1016/S1471-4914(01)02244-4Search in Google Scholar

65. Xia SJ, Pressey JG, Barr FG. Molecular pathogenesis of rhabdomyosarcoma. Cancer Biol Ther2002;1:97–104.10.4161/cbt.51Search in Google Scholar PubMed

66. Kovar H. Ewing tumor biology: perspectives for innovative treatment approaches. Adv Exp Med Biol2003;532:27–37.10.1007/978-1-4615-0081-0_4Search in Google Scholar PubMed

67. Mitelman F, Johansson B, Mertens F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet2004;36:331–4.10.1038/ng1335Search in Google Scholar PubMed

68. Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med2004;350:1535–48.10.1056/NEJMra023001Search in Google Scholar PubMed

69. Bernstein J, Dastugue N, Haas OA, Harbott J, Heerema NA, Huret JL, et al. Nineteen cases of the t(1;22)(p13;q13) acute megakaryblastic leukaemia of infants/children and a review of 39 cases: report from a t(1;22) study group. Leukemia2000;14:216–8.10.1038/sj.leu.2401639Search in Google Scholar PubMed

70. Ma Z, Morris SW, Valentine V, Li M, Herbrick JA, Cui X, et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet2001;28:220–1.10.1038/90054Search in Google Scholar PubMed

71. Mercher T, Coniat MB, Monni R, Mauchauffe M, Khac FN, Gressin L, et al. Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc Natl Acad Sci USA2001;98:5776–9.10.1073/pnas.101001498Search in Google Scholar PubMed PubMed Central

72. Beverloo HB, Panagopoulos I, Isaksson M, van Wering E, van Drunen E, de Klein A, et al. Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res2001;61:5374–7.Search in Google Scholar

73. Tosi S, Hughes J, Scherer SW, Nakabayashi K, Harbott J, Haas OA, et al. Heterogeneity of the 7q36 breakpoints in the t(7;12) involving ETV6 in infant leukemia. Genes Chromosomes Cancer2003;38:191–200.10.1002/gcc.10258Search in Google Scholar PubMed

74. Jaju RJ, Fidler C, Haas OA, Strickson AJ, Watkins F, Clark K, et al. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood2001;98:1264–7.10.1182/blood.V98.4.1264Search in Google Scholar

75. Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S, et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA2005;102:449–54.10.1073/pnas.0406994102Search in Google Scholar PubMed PubMed Central

76. Penas EM, Cools J, Algenstaedt P, Hinz K, Seeger D, Schafhausen P, et al. A novel cryptic translocation t(12;17)(p13;p12-p13) in a secondary acute myeloid leukemia results in a fusion of the ETV6 gene and the antisense strand of the PER1 gene. Genes Chromosomes Cancer2003;37:79–83.10.1002/gcc.10175Search in Google Scholar PubMed

77. Slape C, Aplan PD. The role of NUP98 gene fusions in hematologic malignancy. Leuk Lymphoma2004;45:1341–50.10.1080/10428190310001659325Search in Google Scholar PubMed

78. Pallisgaard N, Hokland P, Riishoj DC, Pedersen B, Jorgensen P. Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood1998;92:574–88.10.1182/blood.V92.2.574Search in Google Scholar

79. Strehl S, König M, Mann G, Haas OA. Multiplex reverse transcriptase-polymerase chain reaction screening in childhood acute myeloblastic leukemia. Blood2001;97:805–8.10.1182/blood.V97.3.805Search in Google Scholar

80. Elia L, Mancini M, Moleti L, Meloni G, Buffolino S, Krampera M, et al. A multiplex reverse transcriptase-polymerase chain reaction strategy for the diagnostic molecular screening of chimeric genes: a clinical evaluation on 170 patients with acute lymphoblastic leukemia. Haematologica2003;88:275–9.Search in Google Scholar

81. Olesen LH, Clausen N, Dimitrijevic A, Kerndrup G, Kjeldsen E, Hokland P. Prospective application of a multiplex reverse transcription-polymerase chain reaction assay for the detection of balanced translocations in leukaemia: a single-laboratory study of 390 paediatric and adult patients. Br J Haematol2004;127:59–66.10.1111/j.1365-2141.2004.05161.xSearch in Google Scholar

82. Maroc N, Morel A, Beillard E, De La Chapelle AL, Fund X, Mozziconacci MJ, et al. A diagnostic biochip for the comprehensive analysis of MLL translocations in acute leukemia. Leukemia2004;18:1522–30.10.1038/sj.leu.2403439Search in Google Scholar

83. Wang X, Young WS 3rd. Rapid amplification of cDNA ends. Methods Mol Biol2003;226:105–16.10.1385/1-59259-384-4:105Search in Google Scholar

84. Megonigal MD, Rappaport EF, Jones DH, Kim CS, Nowell PC, Lange BJ, et al. Panhandle PCR strategy to amplify MLL genomic breakpoints in treatment-related leukemias. Proc Natl Acad Sci USA1997;94:11583–8.10.1073/pnas.94.21.11583Search in Google Scholar

85. Megonigal MD, Rappaport EF, Wilson RB, Jones DH, Whitlock JA, Ortega JA, et al. Panhandle PCR for cDNA: a rapid method for isolation of MLL fusion transcripts involving unknown partner genes. Proc Natl Acad Sci97:9597–602.10.1073/pnas.150241797Search in Google Scholar

86. Raffini LJ, Slater DJ, Rappaport EF, Lo Nigro L, Cheung NK, Biegel JA, et al. Panhandle and reverse-panhandle PCR enable cloning of der(11) and der(other) genomic breakpoint junctions of MLL translocations and identify complex translocation of MLL, AF-4, and CDK6. Proc Natl Acad Sci USA2002;99:4568–73.10.1073/pnas.062066799Search in Google Scholar

87. van Dongen JJ, Seriu T, Panzer-Grümayer ER, Biondi A, Pongers-Willemse MJ, Corral L, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet1998;352:1731–8.10.1016/S0140-6736(98)04058-6Search in Google Scholar

88. Biondi A, Valsecchi MG, Seriu T, D'Aniello E, Willemse MJ, Fasching K, et al. Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group. Leukemia2000;14:1939–43.10.1038/sj.leu.2401922Search in Google Scholar PubMed

89. Konrad M, Metzler M, Panzer S, Oestreicher I, Peham M, Repp R, et al. Late relapses evolve from slow-responding subclones in t(12;21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood2003;101:3635–40.10.1182/blood-2002-10-3252Search in Google Scholar

90. Willemse MJ, Seriu T, Hettinger K, d'Aniello E, Hop WC, Panzer-Grümayer ER, et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood2002;99:4386–93.10.1182/blood.V99.12.4386Search in Google Scholar

91. Lohmann DR, Brandt B, Oehlschlager U, Gottmann E, Hopping W, Passarge E, et al. Molecular analysis and predictive testing in retinoblastoma. Ophthalmic Genet1995;16:135–42.10.3109/13816819509057854Search in Google Scholar

92. Lohmann DR, Brandt B, Hopping W, Passarge E, Horsthemke B. The spectrum of RB1 germ-line mutations in hereditary retinoblastoma. Am J Hum Genet1996;58:940–9.Search in Google Scholar

93. Petruzzi MJ, Green DM. Wilms' tumor. Pediatr Clin North Am1997;44:939–52.10.1016/S0031-3955(05)70538-1Search in Google Scholar

94. Lee SB, Haber DA. Wilms tumor and the WT1 gene. Exp Cell Res2001;264:74–99.10.1006/excr.2000.5131Search in Google Scholar

95. Dome JS, Coppes MJ. Recent advances in Wilms tumor genetics. Curr Opin Pediatr2002;14:5–11.10.1097/00008480-200202000-00002Search in Google Scholar

96. Stocker JT. Hepatoblastoma. Semin Diagn Pathol1994;11:136–43.Search in Google Scholar

97. Stock C, Kager L, Fink FM, Gadner H, Ambros PF. Chromosomal regions involved in the pathogenesis of osteosarcomas. Genes Chromosomes Cancer2000;28:329–36.10.1002/1098-2264(200007)28:3<329::AID-GCC11>3.0.CO;2-FSearch in Google Scholar

98. Biegel JA. Genetics of pediatric central nervous system tumors. J Pediatr Hematol Oncol1997;19:492–501.10.1097/00043426-199711000-00002Search in Google Scholar

99. Kramer DL, Parmiter AH, Rorke LB, Sutton LN, Biegel JA. Molecular cytogenetic studies of pediatric ependymomas. J Neurooncol1998;37:25–33.10.1023/A:1005925613992Search in Google Scholar

100. Biegel JA. Cytogenetics and molecular genetics of childhood brain tumors. Neurooncol1999;1:139–51.10.1215/15228517-1-2-139Search in Google Scholar

101. Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu Rev Neurosci2001;24:385–428.10.1146/annurev.neuro.24.1.385Search in Google Scholar PubMed

102. Pollack IF, Biegel J, Yates A, Hamilton R, Finkelstein S. Risk assignment in childhood brain tumors: the emerging role of molecular and biologic classification. Curr Oncol Rep2002;4:114–22.10.1007/s11912-002-0072-5Search in Google Scholar PubMed

103. MacDonald TJ, Rood BR, Santi MR, Vezina G, Bingaman K, Cogen PH, et al. Advances in the diagnosis, molecular genetics, and treatment of pediatric embryonal CNS tumors. Oncologist2003;8:174–86.10.1634/theoncologist.8-2-174Search in Google Scholar PubMed

104. Rashidi M, DaSilva VR, Minagar A, Rutka JT. Nonmalignant pediatric brain tumors. Curr Neurol Neurosci Rep2003;3:200–5.10.1007/s11910-003-0079-9Search in Google Scholar PubMed

105. Biegel JA, Pollack AI. Molecular Analysis of pediatric brain tumors. Curr Oncol Rep2004;6:445–52.10.1007/s11912-004-0075-5Search in Google Scholar PubMed

106. Rickert CH. Prognosis-related molecular markers in pediatric central nervous system tumors. J Neuropathol Exp Neurol2004;63:1211–24.10.1093/jnen/63.12.1211Search in Google Scholar PubMed

107. Stock C, Ambros IM, Lion T, Haas OA, Zoubek A, Gadner H, et al. Detection of numerical and structural chromosome abnormalities in pediatric germ cell tumors by means of interphase cytogenetics. Genes Chromosomes Cancer1994;11:40–50.10.1002/gcc.2870110107Search in Google Scholar PubMed

108. Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer2001;1:157–62.10.1038/35101031Search in Google Scholar PubMed

109. Tucker T, Friedman JM. Pathogenesis of hereditary tumors: beyond the ‘two-hit’ hypothesis. Clin Genet2002;62:345–57.10.1034/j.1399-0004.2002.620501.xSearch in Google Scholar PubMed

110. Bliek J, Maas SM, Ruijter JM, Hennekam RC, Alders M, Westerveld A, et al. Increased tumour risk for BWS patients correlates with aberrant H19 and not KCNQ1OT1 methylation: occurrence of KCNQ1OT1 hypomethylation in familial cases of BWS. Hum Mol Genet2001;10:467–76.10.1093/hmg/10.5.467Search in Google Scholar PubMed

111. Weksberg R, Nishikawa J, Caluseriu O, Fei YL, Shuman C, Wei C, et al. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety ofconstitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum Mol Genet2001;10:2989–3000.10.1093/hmg/10.26.2989Search in Google Scholar

112. Schindler D, Höhn H. Fanconi Anämie. München: Verlag medizinische genetik, 2003.Search in Google Scholar

113. Wong JC, Buchwald M. Disease model: Fanconi anemia. Trends Mol Med2002;8:139–42.10.1016/S1471-4914(01)02262-6Search in Google Scholar

114. Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet2001;2:446–57.10.1038/35076590Search in Google Scholar PubMed

115. Shimamura A, de Oca RM, Svenson JL, Haining N, Moreau LA, Nathan DG, et al. A novel diagnostic screen for defects in the Fanconi anemia pathway. Blood2002;100:4649–54.10.1182/blood-2002-05-1399Search in Google Scholar PubMed

Online erschienen: 2005-08-17
Erschienen im Druck: 2005-07-01

©2004 by Walter de Gruyter Berlin New York

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/JLM.2005.025/html
Scroll to top button