Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 17, 2016

Refractive index matched half-wave plate with a nematic liquid crystal for three-dimensional laser metrology applications

  • W. Piecek EMAIL logo , L.R. Jaroszewicz , E. Miszczyk , Z. Raszewski , M. Mrukiewicz , P. Perkowski , E. Nowinowski-Kruszelnicki , J. Zieliński , M. Olifierczuk , J. Kędzierski , X.W. Sun , K. Garbat , K. Kowiorski , P. Morawiak , R. Mazur and J. Tkaczyk
From the journal Opto-Electronics Review

Abstract

There exists a need in a quality and accuracy of a three-dimensional laser metrology operating in numerically controlled automatic machines. For this purpose, one sends three laser beams mutually perpendicular. These three beams of the wavelength λ = 0.6328 μm are generated by the same laser and are directed along three independent, orthogonal, mutually perpendicular, optical paths with a given light polarization plain. Using these beams, constituting the frame of coordinates, three independent laser rangefinders are able to determine spatial coordinates of a working tool or a workpiece. To form these optical pulses, a special refractive index matched Half-Wave Plate with nematic Liquid Crystal (LCHWP) was applied. The presented half-wave plate is based on a single Twisted Nematic (TN) cell (with the twist angle Φ = π/2) of a rather high cell gap d ~15 μm filled with a newly developed High-Birefringence Nematic Liquid Crystal Mixture (HBLCM) of optical anisotropy as high as Δn ~0.40 at λ = 0.6328 μm, where the Mauguin limit above 5.00 ~ Δnd >> λ/2 = 0.32 is fulfilled.

Acknowledgements

This paper was done in 2015 under the financial support of the grant NCBIR PBS1/B3/9/2012 (27-339 at MUT) “5D interferometer for the machine geometry setting” and was partially supported by the Polish Ministry of Sciences and Higher Education under a Key Project POIG.01.03.01-14-016/08 “New photonic materials and their advanced application”.

References

1 S.D. Jacobs, K.A. Cerqua, K.L. Marshall, A. Schmid, M.J. Guardalben, and K.J. Skerrett, “Liquid-crystal laser optics – design, fabrication, and performance”, J. Opt. Soc. Am. B5, 1962–1979 (1988).Search in Google Scholar

2 H.L. Ong, “Optical properties of general twisted nematic liquid crystal displays”, Appl. Phys. Lett. 51, 1398–400 (1987).Search in Google Scholar

3 C.H. Gooch and H.A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90 degrees”, J. Phys. D: Appl. Phys. 8, 1575 (1975).Search in Google Scholar

4 E. Nowinowski-Kruszelnicki, L. Jaroszewicz, Z. Raszewski, L. Soms, W. Piecek, P. Perkowski, J. Kędzierski, R. Dąbrowski, M. Olifierczuk, K. Garbat, and E. Miszczyk, “Liquid crystal cell for space-borne laser rangefinder to space mission applications”, Opto-Electron. Rev. 20, 315–322 (2012).Search in Google Scholar

5 R. Dąbrowski, J. Dziaduszek and T. Szczucinski, “Mesomorphic characteristics of some new homologous series with the isothiocyanato terminal group”, Mol. Cryst. Liq. Cryst. 124, 241–257 (1985).Search in Google Scholar

6 A. Spadlo, R. Dąbrowski, M. Filipowicz, Z. Stolarz, J. Przedmojski, S. Gauza, C. Y. H. Fan, and S-T. Wu, “Synthesis, mesomorphic and optical properties of isothiocyanatotolanes”, Liq. Cryst. 30, 191–198 (2003).Search in Google Scholar

7 R. Dabrowski, J. Dziaduszek, A. Ziolek, L. Szczucinski, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S.T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures”, Opto-Electron. Rev. 15, 47–51 (2007).Search in Google Scholar

8 S. Gauza, C-H. Wen, B. Wu, S-T. Wu, A. Spadlo, and R. Dabrowski, “High figure-of-merit nematic mixtures based on totally unsaturated isothiocyanate liquid crystals”, Liq. Cryst. 33, 705–710 (2006).Search in Google Scholar

9 R. Dabrowski, J. Dziaduszek, K. Garbat, M. Filipowicz, S. Urban, S. Gauza, and G. Sasnouski, „Synthesis and mesogenic properties of three- and four-ring compounds with a fluoroisothiocyanatobiphenyl moiety”, Liq. Cryst. 37, 1529–37 (2010).Search in Google Scholar

10 E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, R. Dabrowski, M. Kojdecki, W. Piecek, P. Perkowski, K. Garbat, M. Olifierczuk, M. Sutkowski, K. Ogrodnik, P. Morawiak, and E. Miszczyk, “High birefringence liquid crystal mixtures for electro-optical devices”, Opt. Appl. 42, 167–180 (2012).Search in Google Scholar

11 M. Domon and J. Billard, “Predictions of Phase Diagrams for Certain Liquid Crystalline Mixtures”, Pramana. 1, 131 (1975).Search in Google Scholar

12 Z. Raszewski, E. Kruszelnicki-Nowinowski, J. Kedzierski, P. Perkowski, W. Piecek, R. Dąbrowski, P. Morawiak, and K. Ogrodnik, “Electrically tunable liquid crystal filters”, Mol. Cryst. Liq. Cryst. 525, 112–127 (2010).Search in Google Scholar

13 Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnicki, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell”, J. Appl. Phys. 114, 053104 (2013).Search in Google Scholar

14 Z. Raszewski, W. Piecek, L. Jaroszewicz, E. Nowinowski-Kruszelnicki, P. Perkowski, L. Soms, R. Dąbrowski, J. Kedzierski, M. Olifierczuk, M. Mrukiewicz, E. Miszczyk, P. Morawiak, R. Mazur, and K. Kowiorski, “High Birefringence Liquid Crystals Mixtures and Their Selected Applications”, Adv. Mat. Res. 909, 12–18 (2014).Search in Google Scholar

15 Z. Raszewski, W. Piecek, L. Jaroszewicz, R. Dąbrowski, E. Nowinowski-Kruszelnicki, L. Soms, M. Olifierczuk, J. Kedzierski, P. Morawiak, R. Mazur, E. Miszczyk, M. Mrukiewicz, and K. Kowiorski, “Transparent laser damage resistant nematic liquid crystal cell “LCNP3”, Opto-Electron. Rev. 22, 196–200 (2014).Search in Google Scholar

16 Z. Raszewski, “Measurement of Permittivity of Liquid-Crystalline Substances”, Electron Technology20, 99–113 (1987).Search in Google Scholar

17 P. Perkowski, “Dielectric spectroscopy of liquid crystals. Theoretical model of ITO electrodes influence on dielectric measurements”, Opto-Electron. Rev. 17, 180–186 (2009).Search in Google Scholar

18 J. Kedzierski, Z. Raszewski, M.A. Kojdecki, E. Kruszelnicki-Nowinowski, P. Perkowski, W. Piecek, E. Miszczyk, J. Zielinski, P. Morawiak, and K. Ogrodnik, “Determination of ordinary and extraordinary refractive indices of nematic liquid crystals by using wedge cells”, Opto-Electron. Rev. 18, 214–218 (2010).Search in Google Scholar

19 E. Miszczyk, Z. Raszewski, J. Kedzierski, E. Nowinowski-Kruszelnicki, M.A. Kojdecki, P. Perkowski, W. Piecek, and M. Olifierczuk, “Interference method for determining dispersion of refractive indices of liquid crystals”, Mol. Cryst. Liq. Cryst. 544, 22–36 (2011).Search in Google Scholar

20 J. Kędzierski, M.A. Kojdecki, Z. Raszewski, J. Zielinski, and L. Lipinska, “Determination of anchoring energy, diamagnetic susceptibility anisotropy, and elasticity of some nematics by means of semiempirical method of self-consistent director field”, Proc. SPIE6023, 26–40 (2005).Search in Google Scholar

21 J. Kędzierski, M. A. Kojdecki, Z. Raszewski, P. Perkowski, J. Rutkowska, W. Piecek, L. Lipinska, and E. Miszczyk, “Composite method for determination of liquid crystal material parameters”, Mol. Cryst. Liq. Cryst. 352, 77–84 (2000).Search in Google Scholar

22 J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices”, J. Appl. Phys. 96, 19–24 (2004).Search in Google Scholar

23 J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals”, J. Appl. Phys. 95, 896–901 (2004).Search in Google Scholar

24 J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals”, J. Appl. Phys. 97, 73501 (2005).Search in Google Scholar

25 J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications”, J. Display Technol. 1, 51 (2005).Search in Google Scholar

26 S.-T. Wu, U. Efron, and L.D. Hess, “Birefringence measurements of liquid crystals”, Appl. Opt. 23, 3911 (1984).Search in Google Scholar

27 K. Tarumi, U. Finkenzeller, and B. Schuler, “Dynamic behaviour of twisted nematic liquid-crystals”, Jpn. J. Appl. Phys. 31, 2829-2836 (1992).Search in Google Scholar

28 H. Hirschmann, V. Reiffenrath, D. Demus, J. Goodby, G.W. Gray, H-W. Spiess, and V. Vill, “Applications, TN, STN Displays”, in Handbook of Liquid Crystals Set, Wiley-VCH Verlag GmbH, Weinheim, Germany, 199–229, 1998.Search in Google Scholar

29 S.-T. Wu, A.M. Lackner, and U. Efron, “Optimal operation temperature of liquid crystal modulators”, Appl. Opt. 26, 3441 (1987).Search in Google Scholar

30 J. D. Ingle and S.R. Crouch, in Spectrochemical Analysis, Prentice Hall, New York, 1988.Search in Google Scholar

31 X. Yan, F.W. Mont, D.J. Poxson, M.F. Schubert, J.K. Kim, J. Cho, and E.F. Schubert, “Refractive-index-matched Indium-Tin-Oxide electrodes for liquid crystal displays”, Jpn. J. Appl. Phys. 48, 120203 (2009).Search in Google Scholar

32 Quarzglas für die Optik, Daten und Eigenschaften in: Hearaeus (2009) (IN GERMAN).Search in Google Scholar

33 M. Born and E. Wolf, in Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, New York, 1999.Search in Google Scholar

34 R. Ditchburn, in Light, Dover Publications, New York, 2011.Search in Google Scholar

35 M. Pluta, in Advanced Light Microscopy, North Holland, New York, 1993.Search in Google Scholar

Published Online: 2016-10-17
Published in Print: 2016-12-1

© 2016 SEP, Warsaw

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1515/oere-2016-0023/html
Scroll to top button