Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 31, 2020

Validating the relationships: which species of Myotisnattereri” group (Chiroptera: Vespertilionidae) actually inhabits the Caucasus

  • Sergei V. Kruskop EMAIL logo and Evgeniya N. Solovyeva
From the journal Mammalia

Abstract

Due to their conservative morphology, the complexity of the taxonomic composition of the Myotisnattereri” species complex was highly underestimated until recently. In recent studies, the form inhabiting the Caucasus region was allocated to the species Myotis tschuliensis. However, no molecular data was available from its type territory in Turkmenistan. We successfully isolated DNA from two paratypes of M. tschuliensis stored in the Zoological museum of Moscow State University and obtained partial sequences of the mitochondrial gene ND1. The analysis of the DNA showed that the specimens from the Caucasus and Turkmenistan undoubtedly belong to the same genetic lineage. However, morphometric analysis of cranial and dental features showed that the Caucasus and Turkmenistan populations differ from each other approximately to the same extent as M. tschuliensis from M. nattereri. It is possible that there is a still undescribed geographical race in the Caucasus. However, final clarification of the taxonomic status of this population requires more extensive studies, both genetic and morphological.


Corresponding author: Sergei V. Kruskop, Zoological Museum, Moscow State University, Bolshaya Nikitskaya, 2, 125009 Moscow, Russia, E-mail:

Award Identifier / Grant number: 17-04-00689a

Acknowledgments

Laboratory study of the collection materials was performed in the Zoological Museum of Moscow University, using the collection facilities, with the support from its director, Dr. M.V. Kalyakin. Additional collection materials were studied in Bavarian State Collection of Zoology, München, with help from Dr. A. van Heteren; in National Museum of Natural History, Madrid, with help from Angel L. Garvía Rodríguez; in Royal Ontario Museum, Canada, with kind permission from Dr. J. L. Eger and Dr. B. Lim; in the Museum of Natural History, Great Britain, with support from Mr. R. Portela Miguez; in Hungarian Natural History Museum, Hungary, with support from Dr. G. Csorba; in Penza State University with permission from Dr. D.G. Smirnov; and in the Zoological Institute of RAS, Russia, with permission and help from Dr. L.L. Voita and Dr. F.N. Golenishchev.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The study was supported by the Russian Foundation for Basic Research (grant no. 17-04-00689a). The study was performed in line with State-defined scope of scientific work of the ZMMU (АААА-А16-116021660077-3).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Baker, R.J. and Bradley, R.D. (2006). Speciation in mammals and the genetic species concept. J. Mammal. 87: 643–662. https://doi.org/10.1644/06-mamm-f-038r2.1.Search in Google Scholar

Benda, P., Andreas, M., Kock, D., Lučan, R.K., Munclinger, P., Nová, P., Obuch, J., Ochman, K., Reiter, A., and Uhrin, M. (2006). Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 4. Bat fauna of Syria distribution, systematics, ecology. Acta Soc. Zool. Bohem. 70: 1–329.Search in Google Scholar

Benda, P., Faizolâhi, K., Andreas, M., Obuch, J., Reiter, A., Ševčík, M., Uhrin, M., Vallo, P., and Ashrafi, S. (2012). Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran. Acta Soc. Zool. Bohem. 76: 163–582.Search in Google Scholar

Bobrinskiy, N.A., Kuznetsov, B.A., and Kuzyakin, A.P. (1965). Identification guide to the Mammals of the USSR. Prosvescheniye, Moscow. [in Russian].Search in Google Scholar

Burland, T.G. (1999). DNASTAR’s lasergene sequence analysis software. In: Misener, S. and Krawetz, S.A. (Eds), Bioinformatics methods and protocols. Methods in molecular biology™, Vol 132. Humana Press, Totowa, NJ, pp. 71–91. https://doi.org/10.1385/1-59259-192-2:71.10.1385/1-59259-192-2:71Search in Google Scholar

Corbet, G.B. (1978). The mammals of the Palaearctic region: a taxonomic review. Cornell University Press, London and Ithaca.Search in Google Scholar

Çoraman, E., Dietz, C., Hempel, E., Ghazaryan, A., Levin, E., Presetnik, P., Zagmajster, M., and Mayer, F. (2019). Reticulate evolutionary history of a Western Palaearctic bat complex explained by multiple mtDNA introgressions in secondary contacts. J. Biogeogr. 46: 343–354. https://doi.org/10.1111/jbi.13509.Search in Google Scholar

Ellerman, J.R. and Morrison-Scott, T.C.S. (1951). Checklist of Palaearctic and Indian mammals 1758 to 1946. British Museum (Natural History), London.Search in Google Scholar

García-Mudarra, J.L., Ibáñez, C., and Juste, J. (2009). The Straits of Gibraltar: barrier or bridge to Ibero-Moroccan bat diversity? Biol. J. Linn. Soc. 96: 434–450. https://doi.org/10.1111/j.1095-8312.2008.01128.x.Search in Google Scholar

Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleotide 41: 95–98.Search in Google Scholar

Horacek, I. and Hanák, V. (1984). Comments on the systematics and phylogeny of Myotis nattereri (Kuhl, 1818). Myotis 21-22: 20–29.Search in Google Scholar

Huelsenbeck, J.P. and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754.Search in Google Scholar

Hutterer, R., Ivanova, T., Meyer-Cords, C., and Rodrigues, L. (2005). Bat migrations in Europe. A review of banding data and literature. Federal Agency for Nature Conservation, Bonn.Search in Google Scholar

Ibáñez, C., García-Mudarra, J.L., Ruedi, M., Stadelmann, B., and Juste, J. (2006). The Iberian contribution to cryptic diversity in European bats. Acta Chiropterol. 8: 227–297. https://doi.org/10.3161/1733-5329(2006)8[277:tictcd]2.0.co;2.10.3161/1733-5329(2006)8[277:TICTCD]2.0.CO;2Search in Google Scholar

Jones, G., Parsons, S., Zhang, S., Stadelmann, B., Benda, P., and Ruedi, M. (2006). Echolocation calls, wing shape, diet and phylogenetic diagnosis of the endemic Chinese bat Myotis pequinius. Acta Chiropterol. 8: 451–464. https://doi.org/10.3161/1733-5329(2006)8[451:ecwsda]2.0.co;2.10.3161/1733-5329(2006)8[451:ECWSDA]2.0.CO;2Search in Google Scholar

Juste, J., Ruedi, M., Puechmaille, S.J., Salicini, I., and Ibáñez, C. (2018). Two new cryptic bat species within the Myotis nattereri species complex (Vespertilionidae, Chiroptera) from the Western Palaearctic. Acta Chiropterol. 20: 285–300. https://doi.org/10.3161/15081109acc2018.20.2.001.Search in Google Scholar

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., and Jermiin, L.S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285.Search in Google Scholar

Koopman, K.F. (1994). Chiroptera: systematics. Handbook of zoology. Mammalia. Part 60, Vol. 8. Walter de Gruyter, Berlin & New York.Search in Google Scholar

Kuzyakin, A.P. (1935). New data on the taxonomy and geographical distribution of bats (Chiroptera) in the USSR. MOIP Bull. (Biol. Sect.) XLIV: 428–438. [in Russian].Search in Google Scholar

Kuzyakin, A.P. (1950). Bats (Systematics, life history and utility in agriculture and forestry). Sovetskaya Nauka, Moscow, p. 444. [in Russian].Search in Google Scholar

Lanfear, R., Calcott, B., Ho, S.Y.W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29: 1695–1701. https://doi.org/10.1093/molbev/mss020.Search in Google Scholar

Minh, B.Q., Nguyen, M.A.T., and von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30: 1188–1195. https://doi.org/10.1093/molbev/mst024.Search in Google Scholar PubMed PubMed Central

Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32: 268–274. https://doi.org/10.1093/molbev/msu300.Search in Google Scholar PubMed PubMed Central

Ognev, S.I (1928). The mammals of the Eastern Europe and of the Northern Asia, Vol. 1. Glavnauka, Moscow & Leningrad. [in Russian].Search in Google Scholar

Patten, M.A (2010). Null expectations in subspecies diagnosis. Ornithol. Monogr. 67: 35–41. https://doi.org/10.1525/om.2010.67.1.35.Search in Google Scholar

Patten, M.A., and Remsen, J.VJr. (2017). Complementary roles of phenotype and genotype in subspecies delimitation. J. Hered. 108: 462–464. https://doi.org/10.1093/jhered/esx013.Search in Google Scholar PubMed

Rakhmatulina, I.K. (2005). Bats of Azerbaijan (fauna, ecology and zoogeography). Institute of Zoology of NAS Azerbaijan, Baku. [in Russian].Search in Google Scholar

Rambaut, A. and Drummond, A.J. (2007). Tracer v1.5, Available at: http://beast.bio.ed.ac.uk/Tracer.Search in Google Scholar

Ronquist, F. and Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180.Search in Google Scholar PubMed

Ruedi, M., Stadelmann, B., Gager, Y., Douzery, E. J. P., Francis, C. M., Lin, L.-K., Guillen-Servent, A., and Cibois, A. (2013). Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera). Mol. Phylogenet. Evol. 69: 437–449. https://doi.org/10.1016/j.ympev.2013.08.011.Search in Google Scholar PubMed

Ruedi, M., Puechmaille, S.J., Ibáñez, C., and Juste, J. (2019). Unavailable names in the Myotis nattereri species complex. J. Biogeogr. 46: 2145–2146. https://doi.org/10.1111/jbi.13665.Search in Google Scholar

Salicini, I., Ibáñez, C., and Juste, J. (2011). Multilocus phylogeny and species delimitation within the Natterer’s bat species complex in the Western Palearctic. Mol. Phylogenet. Evol. 61: 888–898. https://doi.org/10.1016/j.ympev.2011.08.010.Search in Google Scholar PubMed

Smithe, F.B (1975). Naturalist’s color guide. American Museum of Natural History, New York.Search in Google Scholar

Strelkov, P.P. (1963). Order Chiroptera–bats. In: Gromov, I.M., Gureyev, A.A., Novikov, G.A., Sokolov, I.I., Strelkov, P.P., and Chapskiy, K.K. (Eds.). Mammals of the fauna of USSR. Part 1. Academy of Sciences of the Soviet Union USSR, Moscow & Leningrad, pp. 122–218. [in Russian].Search in Google Scholar

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729. https://doi.org/10.1093/molbev/mst197.Search in Google Scholar PubMed PubMed Central

Whitaker, J.O. and Hamilton, W.J. (1998). Mammals of the Eastern United States, 3rd ed. New York: Cornell University Press.Search in Google Scholar


Supplementary material

The online version of this article offers supplementary material (https://doi.org/10.1515/mammalia-2019-0146).


Received: 2019-12-03
Accepted: 2020-07-03
Published Online: 2020-08-31
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.1515/mammalia-2019-0146/html
Scroll to top button