Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 26, 2014

Crystallographic and structural characterization of heterometallic platinum clusters Part VIII. Heteronona- and heterodecanuclear clusters

  • Milan Melník , Peter Mikuš and Clive E. Holloway
From the journal Open Chemistry

Abstract

This review classifies and analyses fifty heteronona- and heterodecanuclear Pt clusters of metal composition: Pt4Ru5, Pt3Ru6, Pt20sr PtRh8, PtAu8; Pt6M4, Pt5M5, Pt4M6, Pt3M2, Pt2M8, PtM9, Pt3Ru6M and PtAu8M. There are nine different heterometals: M = Ru, Au, Ag, Cu, Hg, Os, Rh, Ir and Fe, of which Ru and Au are the most frequent. The clusters crystallize mostly into two crystal classes, monoclinic (74%) and triclinic (18%), and their structures are complex. Three triangular layers of nine metal atoms arranged in the form of a face-shared bioctahedron are common in the series of heterononanuclear clusters. In the series of heterodecanuclear clusters distorted skeletal icosahedrons, where a central platinum atom is surrounded by nine metal atoms, and face (edge) shared (fused) bioctahedral cluster of the metal atoms are the most common. The most frequent ligands are CO and PPh3. The shortest metal-metal bond distances are: 2.540(4) Å (Pt-Fe), 2.580(2) Å (Ru-Ru), 2.584 Å (Pt-Pt) and 2.629(4) Å (Cu-Au). Several relationships between the structural parameters were found and are discussed. Some clusters contain two crystallographically independent molecules within the same crystal and are examples of distortion isomerism.

Graphical Abstract

References

[1] Holloway C.E., Melník M., Centr. Eur. J. Chem., 2011, 9, 501 Search in Google Scholar

[2] Melník M., Sprušanský O., Holloway C.E., Centr. Eur., J. Chem. 2012, 10, 1709 Search in Google Scholar

[3] Melník M., Mikuš P., Holloway C.E., Centr. Eur. J. Chem., 2013, 11, 827 10.2478/s11532-013-0226-3Search in Google Scholar

[4] Melník M., Mikuš P., Holloway C.E., Centr. Eur. J. Chem., 2013, 11, 1902 10.2478/s11532-013-0320-6Search in Google Scholar

[5] Melník M., Mikuš P., Holloway C.E., Centr. Eur. J. Chem., 2014, 12, 283 10.2478/s11532-013-0382-5Search in Google Scholar

[6] Melník M., Mikuš P., Holloway C.E., Centr. Eur. J. Chem., 2014, 12, 1101 10.2478/s11532-014-0558-7Search in Google Scholar

[7] Melník M., Mikuš P., Holloway C.E., Centr. Eur. J. Chem. (in press) Search in Google Scholar

[8] Adams R.D., Alexander M.S., Arafa I., Wu W., Inorg. Chem., 1991, 30, 4717 10.1021/ic00025a009Search in Google Scholar

[9] Adams R.D., Wu W., Organometallics, 1993, 12, 1248 10.1021/om00036a040Search in Google Scholar

[10] Adams R.D., Barnard T.S., Li Z., Zhang L., Chem. Ber., 1997, 130, 729 Search in Google Scholar

[11] Adams R.D., Li Z., Swepston P., Wu W., Yamamoto J.H., J. Amer. Chem. Soc., 1992, 114, 10657 10.1021/ja00052a084Search in Google Scholar

[12] Adams R.D., Barnard T.S., Li Z., Wu W., Yamamoto J.H., Organometallics, 1994, 13, 2357 10.1021/om00018a030Search in Google Scholar

[13] Adams R.D., Li Z., Lii J.Ch., Wu W., Organometallics, 1992, 11, 4001 10.1021/om00059a010Search in Google Scholar

[14] Adams R.D., Barnard T.S., Li Z., Wu W., Yamamoto J.H., J. Amer. Chem. Soc., 1994, 116, 9103 10.1021/ja00099a028Search in Google Scholar

[15] Adams R.D., Pompeo M.P., Wu W., Inorg. Chem., 1991, 30, 2425 Search in Google Scholar

[16] Fumagalli A., Martinengo S., Ciani G., Martuxano G., Inorg. Chem., 1986, 25, 592 10.1021/ic00225a003Search in Google Scholar

[17] Krogstad D.A., Young V.G., Jr., Pignolet L.H., Inorg. Chim. Acta, 1997, 264, 19 10.1016/S0020-1693(97)05587-4Search in Google Scholar

[18] Bour J.J., Kanters R.P.F., Schlebos P.P.J., Bosman W.P., Behm H.J., Beurskens P.T., Steggerda J.J., Rec. Trav. Chim. Pays-Bas, 1987, 106, 157 Search in Google Scholar

[19] Kanters R.P.F., Schlebos P.P.J., Bour J.J., Bosman W.P., Behm H.J., Steggerda J.J., Inorg. Chem., 1988, 27, 4034 Search in Google Scholar

[20] (a) Melník M., Coord. Chem. Rev., 1982, 47, 239; (b) Melník M., Holloway C.E., Coord. Chem. Rev., 2006, 250, 2261 Search in Google Scholar

[21] Albinati A., Dahmen K.H., Demartin F., Forward J.M., Longley C.J., Mingos D.M.P., Venanzi L.M., Inorg. Chem., 1992, 31, 2223 10.1021/ic00037a042Search in Google Scholar

[22] Schnebeck R.D., Freisinger E., Globé F., Lippert D., J. Amer. Chem. Soc., 2000, 122, 1381 10.1021/ja9931325Search in Google Scholar

[23] Longoni G., Manasew M., Sansoni M., J. Amer. Chem. Soc., 1980,102, 7973 10.1021/ja00547a043Search in Google Scholar

[24] Adams R.D., Li Z., Lii J.Ch., Wu W., Inorg. Chem., 1992, 31, 3445 Search in Google Scholar

[25] Wurst K., Strähle J., Z. Anorg. Allg. Chem., 1991, 595, 239 Search in Google Scholar

[26] (a) Koshevoy I.O., Tunik S.P., Jääskeläinen S., Haukka M., Pakkanen T.A., J. Chem. Soc., Dalton Trans., 2001, 2965; (b) Koshevoy I.O., Tunik S.P., Jääskeläinen S., Haukka M., Pakkanen T.A., Podkorytov I.S., J. Chem. Soc., Dalton Trans., 2002, 2768 Search in Google Scholar

[27] Adams R.D., Lii J.Ch., Wu W., Inorg. Chem., 1991, 30, 3613 Search in Google Scholar

[28] Adams R.D., Lii J.Ch., Wu W., Inorg. Chem., 1991, 30, 2557 Search in Google Scholar

[29] Adams R.D., Lii J.Ch., Wu W., Inorg. Chem., 1992, 31, 2556 Search in Google Scholar

[30] R.D. Adams, Li Z., Lii J.Ch., Wu W., J. Amer. Chem. Soc., 1992, 114, 4918 10.1021/ja00038a076Search in Google Scholar

[31] Adams R.D., Barnard T., Li Z., Wu W., Yamamoto J.H., J. Cluster Sci., 1994, 5, 551 Search in Google Scholar

[32] Ara I., Forniés J., Gómez J., Lalinde E., Merino R.J., Moreno M.T., Inorg. Chem. Commun., 1999, 2, 62 10.1016/S1387-7003(99)00011-8Search in Google Scholar

[33] Ara I., Forniés J., Gómez J., Lalinde E., Moreno M.T., Organometallics, 2000, 19, 3137 Search in Google Scholar

[34] Krogstad D.A., Konze W.V., Pignolet L.H., Inorg. Chem., 1996, 35, 6763 10.1021/ic960586jSearch in Google Scholar PubMed

[35] Rubinstein L.I., Pignolet L.H., Inorg. Chem., 1996, 35, 6755 10.1021/ic9515160Search in Google Scholar PubMed

[36] Bour J.J., Schlebos P.P.J., Kanters R.P.F., Bosman W.P., Smits J.M.M., Beurskens P.T., Steggerda J.J., Inorg. Chim. Acta, 1990, 171, 177 Search in Google Scholar

[37] Breuer M., Strähle J., Z. Anorg. Allg. Chem., 1993, 619, 1564 10.1002/zaac.19936190134Search in Google Scholar

[38] Schoondergang M.F.J., Bour J.J., van Strijdonck G.P.F., Schlebos P.P.J., Bosman W.P., Smits J.M.M., Beurskens P.T., Steggerda J.J., Inorg. Chem., 1991, 30, 2048 Search in Google Scholar

[39] Adams R.D., Barnard T.S., Cortopassi J.E., Zhang L., Organometallics, 1996, 15, 2664 10.1021/om960116xSearch in Google Scholar

[40] Adams R.D., Barnard T.S., Cortopassi J.E., Organometallics, 1995, 14, 2232 10.1021/om00005a024Search in Google Scholar

[41] Gould R.A.T., Craighead K.L., Wiley J.S., Pignolet L.H., Inorg. Chem., 1995, 34, 2902 Search in Google Scholar

[42] Schoondergung M.F.J., Bour J.J., Schlebos P.P.J., Vermeer A.W.P., Bosman W.P., Smits J.M.M., Beurskens P.T., Steggerda J.J., Inorg. Chem., 1991, 30, 4704 10.1021/ic00025a007Search in Google Scholar

[43] Kanters R.P.F., Schlebos P.P.J., Bour J.J., Bosman W.P., Smits J.M.M., Beurskens P.T., Steggerda J.J., Inorg. Chem., 1990, 29, 324 Search in Google Scholar

[44] Kappen T.G.M.M., Schlebos P.P.J., Bour J.J., Bosman W.P., Smits J.M.M., Beurskens P.T., Steggerda J.J., Inorg. Chem., 1995, 34, 3135 Search in Google Scholar

[45] Kappen T.G.M.M., Schlebos P.P.J., Bour J.J., Bosman W.P., Beurskens G., Smits J.M.M., Beurskens P.T., Steggerda J.J., Inorg. Chem., 1995, 34, 2121 Search in Google Scholar

Received: 2014-3-20
Accepted: 2014-5-16
Published Online: 2014-11-26

© 2015 Milan Melník, Peter Mikuš, Clive E. Holloway

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0053/html
Scroll to top button