Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 24, 2005

The polysaccharide scaffold of PrP 27-30 is a common compound of natural prions and consists of α-linked polyglucose

  • Christian Dumpitak , Michael Beekes , Nicole Weinmann , Sabine Metzger , Konstanze F. Winklhofer , Jörg Tatzelt and Detlev Riesner
From the journal Biological Chemistry

Abstract

An inert polysaccharide scaffold identified as a 5–15% component of prion rods (PrP 27–30) is unambiguously distinguishable from the N-glycosyl groups and the GPI anchor of PrP, and consists predominantly of 1,4-linked glucose with some branching via 1,4,6-linked glucose. We show that this polysaccharide scaffold is a common secondary component of prions found in hamster full-length PrPSc, prion rods and in mouse ScN2a prions from cell culture. The preparation from prion rods was improved, resulting in a polysaccharide scaffold free of remaining infectivity. Furthermore, we determined the stereochemistry of the glycoside linkages as pre-dominantly if not entirely α-glycosidic. The origin of the polysaccharide, its interaction with PrP and its potential relation to glycogen and corpora amylacea are discussed.

:

Corresponding author

References

Angyal, S.J. and James, K. (1970). Oxidation of carbohydrates with chromium trioxide in acetic acid. Aust. J. Chem.23, 1209–1306.10.1071/CH9701209Search in Google Scholar

Appel, T.R., Dumpitak, C., Matthiesen, U., and Riesner D. (1999). Prion rods contain an inert polysaccharide scaffold. Biol. Chem.380, 1295–1306.10.1515/BC.1999.165Search in Google Scholar

Baldauf, E., Beekes, M., and Diringer, H. (1997). Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. J. Gen. Virol.78, 1187–1197.10.1099/0022-1317-78-5-1187Search in Google Scholar

Beekes, M., Baldauf, E., and Diringer, H. (1996). Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J. Gen. Virol.77, 1925–1934.10.1099/0022-1317-77-8-1925Search in Google Scholar

Botez, G. and Rami, A. (2001). Immunoreactivity for Bcl-2 and C-Jun/AP1 in hippocampal corpora amylacea after ischaemia in humans. Neuropathol. Appl. Neurobiol.27, 474–480.10.1046/j.1365-2990.2001.00362.xSearch in Google Scholar

Calder, P.C. (1991). Glycogen structure and biogenesis. Int. J. Biochem.23, 1335–1352.10.1016/0020-711X(91)90274-QSearch in Google Scholar

Cavanagh, J.B. (1999). Corpora amylacea and the family of polyglucosan diseases. Brain Res. Rev.29, 265–295.10.1016/S0165-0173(99)00003-XSearch in Google Scholar

Chee, N.P., Geddes, R., and Wills, P.R. (1983), Metabolic heterogeneity in rabbit brain glycogen. Biochim. Biophys. Acta756, 9–12.10.1016/0304-4165(83)90017-XSearch in Google Scholar

Diringer, H., Beekes, M., Ozel, M., Simon, D., Queck, I., Cardone, F., Pocchiari, M., and Ironside, J.W. (1998). Highly infectious purified preparations of disease-specific amyloid of transmissible spongiform encephalopathies are not devoid of nucleic acids of viral size. Intervirology40, 238–246.Search in Google Scholar

Ellis, R.J. (2001). Macromolecular crowding: obvious but under-appreciated. Trends Biochem. Sci.26, 597–604.10.1016/S0968-0004(01)01938-7Search in Google Scholar

Endo, T., Groth, D., Prusiner, S.B., and Kobata, A. (1989). Diversity of oligosaccharide structures links to asparagines of the scrapie prion protein. Biochemistry28, 8380–8388.10.1021/bi00447a017Search in Google Scholar PubMed

Flechsig, E., Hegyi, I., Enari, M., Schwarz, P., Collinge, J., and Weissmann, C. (2001). Transmission of scrapie by steel-surface-bound prions. Mol. Med.7, 679–684.10.1007/BF03401958Search in Google Scholar

Geddes, R., Harvey, J.D., and Wills, P.R. (1977). The molecular size and shape of liver glycogen. Biochem. J.163, 201–209.10.1042/bj1630201Search in Google Scholar

Gessler, K., Usón, I., Takaha, T., Krauss, N., Smith, S.M., Okada, S., Sheldrick, G.M., and Saenger, W. (1999). V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Natl. Acad. Sci. USA96, 4246–4251.10.1073/pnas.96.8.4246Search in Google Scholar

Hatters, D.M., Minton, A.P., and Howlett, G.J. (2002). Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J. Biol. Chem.277, 7824–7830.10.1074/jbc.M110429200Search in Google Scholar

Hellerqvist, C.G. and Sweetman, B.J. (1990). Mass spectrometry of carbohydrates. Methods Biochem. Anal.34, 92–143.10.1002/9780470110553.ch2Search in Google Scholar

Hoyaux, D., Decaestecker, C., Heizmann, C.W., Vogl, T., Schafer, B.W., Salmon, I., Kiss, R., and Pochet, R. (2000). S100 proteins in corpora amylacea from normal human brain. Brain Res.867, 280–288.10.1016/S0006-8993(00)02393-3Search in Google Scholar

Immel, S. and Lichtenthaler, F.W. (2000). The hydrophobic topographies of amylose and its blue iodine complex. Starch52, 1–8.10.1002/(SICI)1521-379X(200001)52:1<1::AID-STAR1>3.0.CO;2-HSearch in Google Scholar

Kellings, K., Meyer, N., Mirenda, C., Prusiner, S.B., and Riesner, D. (1992). Further analysis of nucleic acids in purified scrapie prion preparations by improved return refocusing gel electrophoresis. J. Gen. Virol.73, 1025–1029.10.1099/0022-1317-73-4-1025Search in Google Scholar

Kinjo, A.R. and Takada, S. (2002a). Effects of macromolecular crowding on protein folding and aggregation studied by density functional theory: statics. Phys. Rev. E66, 031911.10.1103/PhysRevE.66.031911Search in Google Scholar

Kinjo, A.R. and Takada, S. (2002b). Effects of macromolecular crowding on protein folding and aggregation studied by density functional theory: dynamics. Phys. Rev. E66, 051902.10.1103/PhysRevE.66.051902Search in Google Scholar

Klein, T.R., Kirsch, D., Kaufmann, R., and Riesner, D. (1998). Prion rods contain small amounts of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol. Chem.379, 655–666.10.1515/bchm.1998.379.6.655Search in Google Scholar

Kubik, S., Höller, O., Steinert, A., Tolksdorf, M., Van der Leek, Y., and Wulff, G. (1996). Molecular inclusion within polymeric carbohydrate matrices. In: Carbohydrates as Organic Raw Materials III, H. Van Bekkum, H. Röper, and A.G.J. Vorangen, eds. (Weinheim, Germany: Wiley-VCH), pp. 169–187.10.1002/9783527614899.ch10Search in Google Scholar

Lecker, D.N., Kumari, S., and Khan, A. (1997). Iodine binding capacity and iodine binding energy of glycogen. J. Polym. Sci. A Polym. Chem.35, 1409–1412.10.1002/(SICI)1099-0518(199706)35:8<1409::AID-POLA9>3.0.CO;2-USearch in Google Scholar

Legname, G., Baskakov, I.V., Nguyen, H.O., Riesner, D., Cohen, F.E., DeArmond, S.J., and Prusiner, S.B. (2004). Synthetic mammalian prions. Science305, 673–676.10.1126/science.1100195Search in Google Scholar

McKinley, M.P., Braunfeld, M.B., Bellinger, C.G., and Prusiner, S.B. (1986). Molecular characteristics of prion rods purified from scrapie-infected hamster brains. J. Infect. Dis.154, 110–120.10.1093/infdis/154.1.110Search in Google Scholar

Meléndez, R., Meléndez-Hevia, E., and Canela, E.I. (1999). The fractal structure of glycogen: a clever solution to optimize cell metabolism. Biophys. J.77, 1327–1332.10.1016/S0006-3495(99)76982-1Search in Google Scholar

Nimz, O., Gessler, K., Uson, I., Laettig, S., Welfle, H., Sheldrick, G.M., and Saenger, W. (2003). X-Ray structure of the cyclomaltohexaicosaose triiodide inclusion complex provides a model for amylose-iodine at atomic resolution. Carbohydr. Res.338, 977–986.10.1016/S0008-6215(03)00016-8Search in Google Scholar

Prusiner, S.B. (1998). Prions. Proc. Natl. Acad. Sci. USA95, 13363–13383.10.1073/pnas.95.23.13363Search in Google Scholar

Prusiner, S.B., McKinley, M.P., Bolton, D.C., Bendheim, P.E., Groth, D.F., and Glenner, G.G. (1983). Scrapie prions aggregate to form amyloid-like birefringent rods. Cell35, 349–358.10.1016/0092-8674(83)90168-XSearch in Google Scholar

Riesner, D. (2004). Biochemistry and structure of PrPC and PrPSc. Br. Med. Bull.66, 21–33.Search in Google Scholar

Roach, P.J. (2000). Biosynthesis of glycogen. In: Carbohydrates in Chemistry and Biology. Part II. Biology of Saccharides, B. Ernst, G.W. Hart, and P. Sinaÿ, eds. (Weinheim, Germany: Wiley-VCH), pp. 349–361.10.1002/9783527618255.ch59Search in Google Scholar

Rudd, P.M., Endo, T., Colominas, C., Groth, D., Wheeler, S.F., Harvey, D.J., Wormald, M.R., Serban, H., Prusiner, S.B., Kobata, A., and Dwerk, R.A. (1999). Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc. Natl. Acad. Sci. USA96, 13044–13049.10.1073/pnas.96.23.13044Search in Google Scholar

Safar, J., Cohen, F.E., and Prusiner, S.B. (2000). Quantitative traits of prion strains are enciphered in the conformation of the prion protein. Arch. Virol. Suppl.16, 227–235.10.1007/978-3-7091-6308-5_22Search in Google Scholar

Safar, J.G., Kellings, K., Serban, H., Groth, D., Cleaver, J., Prusiner, S.B., and Riesner, D. (2005). Biophysical search for mass of prion and nucleic acids encoding strain-specific properties. J. Virol., in press.Search in Google Scholar

Sakai, M., Austin, J., Witmer, F., and Trueb, L. (1969). Studies of corpora amylacea: I. Isolation and preliminary characterization by chemical and histochemical techniques. Arch. Neurol.21, 526–544.Search in Google Scholar

Singhrao, S.K., Morgan, B.P., Neal, J.W., and Newman, G.R. (1995). A functional role for corpora amylacea based on evidence from complement studies. Neurodegeneration4,335–345.10.1016/1055-8330(95)90024-1Search in Google Scholar

Stam, F.C. and Roukema, P.A. (1973). Histochemical and biochemical aspects of corpora amylacea. Acta Neuropathol. (Berl.)25, 95–102.10.1007/BF00687554Search in Google Scholar

Steyaert, A., Cissé, S., Merhi, Y., Kalbakji, A., Reid, N., Gauvreau, D., and Lacoste-Royal, G. (1990). Purification and polypeptide composition of corpora amylacea from aged human brain. J. Neurosci. Methods31, 59–164.10.1016/0165-0270(90)90010-DSearch in Google Scholar

Sugiyama, H., Hainfellner, J.A., Lassmann, H., Indravasu, S., and Budka, H. (1993). Uncommon types of polyglucosan bodies in the human brain: distribution and relation to disease. Acta Neuropathol.86, 484–490.10.1007/BF00228584Search in Google Scholar PubMed

Thomzig, A., Kratzel, C., Lenz, G., Kruger, D., and Beekes, M. (2003). Widespread PrPSc accumulation in muscles of hamsters orally infected with scrapie. EMBO Rep.4, 1–4.Search in Google Scholar

Turk, E., Teplow, D.B., Hood, L.E., and Prusiner, S.B. (1988). Purification and properties of the cellular and scrapie hamster prion proteins. Eur. J. Biochem.176, 21–30.10.1111/j.1432-1033.1988.tb14246.xSearch in Google Scholar PubMed

Uversky, V.N., Cooper, E.M., Bower, K.S., Li, J., and Fink, A.L. (2001). Accelerated α-synuclein fibrillation in crowded milieu. FEBS Lett.515, 99–103.Search in Google Scholar

van den Berg, B., Ellis, R.J., and Dobson, C.M. (1999). Effects of macromolecular crowding on protein folding and aggregation. EMBO J.24, 6927–16933.10.1093/emboj/18.24.6927Search in Google Scholar PubMed PubMed Central

Whelan, W.J. (1971). Enzymatic explorations of the structures of starch and glycogen. Biochem. J.122, 609–622.10.1042/bj1220609Search in Google Scholar PubMed PubMed Central

Winklhofer, K.F. and Tatzelt, J. (2000). Cationic lipopolyamines induce degradation of PrPSc in scrapie-infected mouse neuroblastoma cells. Biol. Chem.381, 463–469.10.1515/BC.2000.061Search in Google Scholar PubMed

Zobeley, E., Flechsig, E., Cozzio, A., Enari, M., and Weissmann, C. (1999). Infectivity of scrapie prions bound to a stainless steel surface. Mol. Med.5, 240–243.10.1007/BF03402121Search in Google Scholar

Published Online: 2005-11-24
Published in Print: 2005-11-01

©2005 by Walter de Gruyter Berlin New York

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.131/html
Scroll to top button