Skip to content
Publicly Available Published by De Gruyter September 9, 2005

Symmetry at the active site of the ribosome: structural and functional implications

  • Ilana Agmon , Anat Bashan , Raz Zarivach and Ada Yonath
From the journal Biological Chemistry

Abstract

The sizable symmetrical region, comprising 180 ribosomal RNA nucleotides, which has been identified in and around the peptidyl transferase center (PTC) in crystal structures of eubacterial and archaeal large ribosomal subunits, indicates its universality, confirms that the ribosome is a ribozyme and evokes the suggestion that the PTC evolved by gene fusion. The symmetrical region can act as a center that coordinates amino acid polymerization by transferring intra-ribosomal signals between remote functional locations, as it connects, directly or through its extensions, the PTC, the three tRNA sites, the tunnel entrance, and the regions hosting elongation factors. Significant deviations from the overall symmetry stabilize the entire region and can be correlated with the shaping and guiding of the motion of the tRNA 3′-end from the A- into the P-site. The linkage between the elaborate PTC architecture and the spatial arrangements of the tRNA 3′-ends revealed the rotatory mechanism that integrates peptide bond formation, translocation within the PTC and nascent protein entrance into the exit tunnel. The positional catalysis exerted by the ribosome places the reactants in stereochemistry close to the intermediate state and facilitates the catalytic contribution of the P-site tRNA 2′-hydroxyl.


Corresponding author

References

Agmon, I., Auerbach, T., Baram, D., Bartels, H., Bashan, A., Berisio, R., Fucini, P., Hansen, H.A., Harms, J., Kessler, M., et al. (2003). On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Eur. J. Biochem. 270 , 2543 –3556.10.1046/j.1432-1033.2003.03634.xSearch in Google Scholar

Agmon, I., Amit, M., Auerbach, T., Bashan, A., Baram, D., Bartels, H., Berisio, R., Greenberg, I., Harms, J., Hansen, H.A.S., et al. (2004). Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation facilitates peptide bond formation, chirality discrimination and antibiotics synergism. FEBS Lett. 567 , 20 –26.10.1016/j.febslet.2004.03.065Search in Google Scholar

Agrawal, R.K., Spahn, C.M., Penczek, P., Grassucci, R.A., Nierhaus, K.H., and Frank, J. (2000). Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J. Cell Biol. 150 , 447 –460.10.1083/jcb.150.3.447Search in Google Scholar

Aronson, H.E., Royer, W.E. Jr., and Hendrickson, W.A. (1994). Quantification of tertiary structural conservation despite primary sequence drift in the globin fold. Protein Sci. 3 , 1706 –1711.10.1002/pro.5560031009Search in Google Scholar

Bailey, S. (1994). The CCP4 suite – programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50 , 760 –763.Search in Google Scholar

Ban, N., Nissen, P., Hansen, J., Moore, P.B., and Steitz, T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289 , 905 –920.Search in Google Scholar

Baram, D. and Yonath, A. (2005). From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects. FEBS Lett. 579 , 948 –954.10.1016/j.febslet.2004.11.063Search in Google Scholar

Bashan, A., Agmon, I., Zarivach, R., Schluenzen, F., Harms, J., Berisio, R., Bartels, H., Franceschi, F., Auerbach, T., Hansen, H.A.S., et al. (2003a). Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol. Cell 11 , 91 –102.10.1016/S1097-2765(03)00009-1Search in Google Scholar

Bashan, A., Zarivach, R., Schluenzen, F., Agmon, I., Harms, J., Auerbach, T., Baram, D., Berisio, R., Bartels, H., Hansen, H.A., et al. (2003b). Ribosomal crystallography: peptide bond formation and its inhibition. Biopolymers 70 , 19 –41.10.1002/bip.10412Search in Google Scholar PubMed

Bocchetta, M., Xiong, L., and Mankin, A.S. (1998). 23S rRNA positions essential for tRNA binding in ribosomal functional sites. Proc. Natl. Acad. Sci. USA 95 , 3525 –3530.10.1073/pnas.95.7.3525Search in Google Scholar PubMed PubMed Central

Cannone, J.J., Subramanian, S., Schnare, M.N., Collett, J.R., D'Souza, L.M., Du, Y., Feng, B., Lin, N., Madabusi, L.V., Müller, K.M., et al. (2002). The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3 , 1 –31.Search in Google Scholar

Cooperman, B.S., Wooten, T., Romero, D.P., and Traut, R.R. (1995). Histidine 229 in protein L2 is apparently essential for 50S peptidyl transferase activity. Biochem. Cell Biol. 73 , 1087 –1094.10.1139/o95-117Search in Google Scholar PubMed

Diedrich, G., Spahn, C.M., Stelzl, U., Schafer, M.A., Wooten, T., Bochkariov, D.E., Cooperman, B.S., Traut, R.R., and Nierhaus, K.H. (2000). Ribosomal protein L2 is involved in the association of the ribosomal subunits, tRNA binding to A and P sites and peptidyl transfer. EMBO J. 19 , 5241 –5250.10.1093/emboj/19.19.5241Search in Google Scholar PubMed PubMed Central

Dorner, S., Polacek, N., Schulmeister, U., Panuschka, C., and Barta, A. (2002). Molecular aspects of the ribosomal peptidyl transferase. Biochem. Soc. Trans. 30 , 1131 –1136.10.1042/bst0301131Search in Google Scholar

Fujiwara, S., Lee, S.G., Haruki, M., Kanaya, S., Takagi, M., and Imanaka, T. (1996). Unusual enzyme characteristics of aspartyl-tRNA synthetase from hyperthermophilic archaeon Pyrococcus sp. KOD1. FEBS Lett. 394 , 66 –70.10.1016/0014-5793(96)00904-0Search in Google Scholar

Green, R., Samaha, R.R., and Noller, H.F. (1997). Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J. Mol. Biol. 266 , 40 –50.10.1006/jmbi.1996.0780Search in Google Scholar

Gregory, S.T. and Dahlberg, A.E. (2004). Peptide bond formation is all about proximity. Nat. Struct. Mol. Biol. 11 , 586 –587.10.1038/nsmb0704-586Search in Google Scholar

Hansen, J.L., Schmeing, T.M., Moore, P.B., and Steitz, T.A. (2002). Structural insights into peptide bond formation. Proc. Natl. Acad. Sci. USA 99 , 11670 –11675.10.1073/pnas.172404099Search in Google Scholar

Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001). High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107 , 679 –688.10.1016/S0092-8674(01)00546-3Search in Google Scholar

Harms, J., Schluenzen, F., Fucini, P. Bartels, H., and Yonath, A. (2004). Alterations at the peptidyl transferase center of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2 , 1 –1010.1186/1741-7007-2-4Search in Google Scholar

Hausner, T.P., Atmadja, J., and Nierhaus, K.H. (1987). Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69 , 911 –923.10.1016/0300-9084(87)90225-2Search in Google Scholar

Kim, D.F. and Green, R. (1999). Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4 , 859 –864.10.1016/S1097-2765(00)80395-0Search in Google Scholar

Klein, D.J., Moore, P.B., and Steitz, T.A. (2004). The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J. Mol. Biol. 340 , 141 –177.10.1016/j.jmb.2004.03.076Search in Google Scholar PubMed

Moazed, D. and Noller, H.F. (1989). Intermediate states in the movement of transfer RNA in the ribosome. Nature 342 , 142 –148.10.1038/342142a0Search in Google Scholar

Moazed, D., Robertson, J.M., and Noller, H.F. (1988). Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334 , 362 –364.10.1038/334362a0Search in Google Scholar

Mohr, D., Wintermeyer, W., and Rodnina, M.V. (2002). GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41 , 12520 –12528.10.1021/bi026301ySearch in Google Scholar

Nierhaus, K.H., Schulze, H., and Cooperman, B.S. (1980). Molecular mechanisms of the ribosomal peptidyl transferase center. Biochem. Int. 1 , 185 –192.Search in Google Scholar

Nissen, P., Hansen, J., Ban, N., Moore, P.B., and Steitz, T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289 , 920 –930.10.1126/science.289.5481.920Search in Google Scholar

Nitta, I., Kamada, Y., Noda, H., Ueda, T., and Watanabe, K. (1998). Reconstitution of peptide bond formation with Escherichia coli 23S ribosomal RNA domains. Science 281 , 666 –669.10.1126/science.281.5377.666Search in Google Scholar

Noller, H.F., Hoffarth, V., and Zimniak, L. (1992). Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256 , 1416 –1419.10.1126/science.1604315Search in Google Scholar

Polacek, N., Gomez, M.J., Ito, K., Xiong, L., Nakamura, Y., and Mankin, A. (2003). The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol. Cell 11 , 103 –112.10.1016/S1097-2765(02)00825-0Search in Google Scholar

Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., and Yonath, A. (2000). Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102 , 615 –623.10.1016/S0092-8674(00)00084-2Search in Google Scholar

Schmeing, T.M., Seila, A.C., Hansen, J.L., Freeborn, B., Soukup, J.K., Scaringe, S.A., Strobel, S.A., Moore, P.B., and Steitz, T.A. (2002). A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nat. Struct. Biol. 9 , 225 –230.10.1038/nsb758Search in Google Scholar PubMed

Schmeing, T.M., Moore, P.B., and Steitz, T.A. (2003). Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9 , 1345 –1352.10.1261/rna.5120503Search in Google Scholar PubMed PubMed Central

Sievers, A., Beringer, M., Rodnina, M.V., and Wolfenden, R. (2004). The ribosome as an entropy trap. Proc. Natl. Acad. Sci. USA 101 , 7897 –7901.10.1073/pnas.0402488101Search in Google Scholar

Simonson, A.B. and Lake, J.A. (2002). The transorientation hypothesis for codon recognition during protein synthesis. Nature 416 , 281 –285.10.1038/416281aSearch in Google Scholar

Stade, K., Junke, N., and Brimacombe, R. (1995). Mapping the path of the nascent peptide chain through the 23S RNA in the 50S ribosomal subunit. Nucleic Acids Res. 23 , 2371 –2380.10.1093/nar/23.13.2371Search in Google Scholar

Stark, H., Orlova, E.V., Rinke-Appel, J., Junke, N., Mueller, F., Rodnina, M., Wintermeyer, W., Brimacombe, R., and van Heel, M. (1997). Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88 , 19 –28.10.1016/S0092-8674(00)81854-1Search in Google Scholar

Stark, H., Rodnina, M.V., Wieden, H.J., Zemlin, F., Wintermeyer, W., and Van Heel, M. (2002). Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9 , 849 –854.10.1038/nsb859Search in Google Scholar

Uhlein, M., Weglohner, W., Urlaub, H., and Wittmann-Liebold, B. (1998). Functional implications of ribosomal protein L2 in protein biosynthesis as shown by in vivo replacement studies. Biochem. J. 331 , 423 –430.10.1042/bj3310423Search in Google Scholar

Valle, M., Sengupta, J., Swami, N.K., Grassucci, R.A., Burkhardt, N., Nierhaus, K.H., Agrawal, R.K., and Frank, J. (2002). Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21 , 3557 –3567.10.1093/emboj/cdf326Search in Google Scholar

Weinger, J.S., Parnell, K.M., Dorner, S., Green, R., and Strobel, S.A. (2004). Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat. Struct. Mol. Biol. 11 , 1101 –1106.10.1038/nsmb841Search in Google Scholar

Wilson, K.S. and Noller, H.F. (1998). Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92 , 131 –139.10.1016/S0092-8674(00)80905-8Search in Google Scholar

Wimberly, B.T., Guymon, R., McCutcheon, J.P., White, S.W., and Ramakrishnan, V. (1999). A detailed view of a ribosomal active site: the structure of the L11- RNA complex. Cell 97 , 491 –502.10.1016/S0092-8674(00)80759-XSearch in Google Scholar

Wimberly, B.T., Brodersen, D.E., Clemons Jr. W.M., Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature 407 , 327 –339.10.1038/35030006Search in Google Scholar

Wower, J., Kirillov, S.V., Wower, I.K., Guven, S., Hixson, S.S., and Zimmermann, R.A. (2000). Transit of tRNA through the Escherichia coli ribosome. Cross-linking of the 3′-end of tRNA to specific nucleotides of the 23 S ribosomal RNA at the A, P, and E sites. J. Biol. Chem. 275 , 37887 –37894.Search in Google Scholar

Wriggers, W., Agrawal, R.K., Drew, D.L., McCammon, A., and Frank, J. (2000). Domain motions of EF-G bound to the 70S ribosome: insights from a hand-shaking between multi-resolution structures. Biophys. J. 79 , 1670 –1678.10.1016/S0006-3495(00)76416-2Search in Google Scholar

Yonath, A. (2003a). Structural insight into functional aspects of ribosomal RNA targeting. ChemBioChem 4 , 1008 –1017.10.1002/cbic.200300683Search in Google Scholar

Yonath, A. (2003b). Ribosomal tolerance and peptide bond formation. Biol. Chem. 384 , 1411 –1419.10.1515/BC.2003.156Search in Google Scholar

Youngman, E.M., Brunelle, J.L., Kochaniak, A.B., and Green, R. (2004). The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117 , 589 –599.10.1016/S0092-8674(04)00411-8Search in Google Scholar

Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman, K., Earnest, T.N., Cate, J.H., and Noller, H.F. (2001). Crystal structure of the ribosome at 5.5 Å resolution. Science 292 , 883 –896.Search in Google Scholar

Zarivach, R., Bashan, A., Berisio, R., Harms, J., Auerbach, T., Schluenzen, F., Bartels, H., Baram, D., Pyetan, E., Sittner, A. et al. (2004). Functional aspects of ribosomal architecture: symmetry, chirality and regulation. J. Phys. Org. Chem. 17 , 901 –912.10.1002/poc.831Search in Google Scholar

Published Online: 2005-9-9
Published in Print: 2005-9-1

©2005 by Walter de Gruyter Berlin New York

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.098/html
Scroll to top button