Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 1, 2005

Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry

  • Sergey Strelkov , Mirko von Elstermann and Dietmar Schomburg
From the journal Biological Chemistry

Abstract

An analytical method based on gas chromatography/mass spectrometry was developed for metabolome investigation of Corynebacterium glutamicum. For the first time a fast method for metabolic screening that can be automated is described for this organism. More than 1000 compounds could be detected per experiment, ca. 330 of those showed a peak area significantly above background. Out of these 164 compounds were identified so far, representing derivatives of 121 different metabolites, which were quantified in one sample. In spite of the different chemical nature of metabolites and high matrix content, a measurement reproducibility in the range of 6% error was achieved. The application of this method for the analysis of the adaptation of C. glutamicum to different growth conditions is demonstrated.

:

References

Blau, K., and King, G.S. (1977). Handbook of Derivatives for Chromatography (London-Bellmawr, N.J.-Rheine: Heyden).Search in Google Scholar

Buchholz, A., Takors, R., and Wandrey, C. (2001). Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal. Biochem.295, 129–137.10.1006/abio.2001.5183Search in Google Scholar

Dominguez, H., and Lindley, N.D. (1996). Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl. Environ. Microbiol.62, 3878–3880.10.1128/aem.62.10.3878-3880.1996Search in Google Scholar

Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics2, 155–168.10.1002/cfg.82Search in Google Scholar

Fiehn, O. (2002). Metabolomics–the link between genotypes and phenotypes. Plant. Mol. Biol.48, 155–171.10.1023/A:1013713905833Search in Google Scholar

Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., and Willmitzer, L. (2000a). Metabolite profiling for plant functional genomics. Nat. Biotechnol.18, 1157–61.10.1038/81137Search in Google Scholar

Fiehn, O., Kopka, J., Trethewey, R. N., and Willmitzer, L. (2000b). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem.72, 3573–3580.10.1021/ac991142iSearch in Google Scholar

Fox, A. (1999). Carbohydrate profiling of bacteria by gas chromatography-mass spectrometry and their trace detection in complex matrices by gas chromatography-tandem mass spectrometry. J. Chromatogr. A843, 287–300.10.1016/S0021-9673(98)00884-XSearch in Google Scholar

Gailly, C., Sandra, P., Verzele, M., and Cocito, C. (1982). Analysis of mycolic acids from a group of corynebacteria by capillary gas chromatography and mass spectrometry. Eur. J. Biochem.125, 83–94.10.1111/j.1432-1033.1982.tb06654.xSearch in Google Scholar

Gehrke, C. W., and Leimer, K. (1970). Trimethylsilylation of amino acids: effect of solvents on derivatization using bis(trimethylsilyl)trifluoroacetamide. J. Chromatogr. A53, 201–208.10.1016/S0021-9673(01)98459-6Search in Google Scholar

Gehrke, C. W., and Leimer, K. (1971). Trimethylsilylation of amino acids derivatization and chromatography. J. Chromatogr. A57, 219–238.10.1016/0021-9673(71)80035-3Search in Google Scholar

Gehrke, C. W., Nakamoto, H., and Zumwalt, R.W. (1969). Gas-liquid chromatography of protein amino acid trimethylsilyl derivatives. J. Chromatogr. A45, 24–51.10.1016/S0021-9673(01)86179-3Search in Google Scholar

Grob, K. (1995). Einspritztechniken in der Kapillar-Gaschromatographie (Heidelberg, Germany: Huethig GmbH).Search in Google Scholar

Harvey, D. J., and Horning, M.G. (1973). Characterization of the trimethylsilyl derivatives of sugar phosphates and related compounds by gas chromatography and gas chromatography mass spectrometry. J. Chromatogr. A76, 51–62.10.1016/S0021-9673(01)97777-5Search in Google Scholar

Hušek, P., and Macek, K. (1975). Gas chromatography of amino acids. J. Chromatogr.113, 139–230.10.1016/S0021-9673(00)86962-9Search in Google Scholar

Katona, Z. F., Sass, P., and Molnar-Perl, I. (1999). Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography-mass spectrometry. J. Chromatogr. A847, 91–102.10.1016/S0021-9673(99)00333-7Search in Google Scholar

Kuhara, T., Shinka, T., Inoue, Y., Ohse, M., Zhen-wei, X., Yoshida, I., Inokuchi, T., Yamaguchi, S., Takayanagi, M., and Matsumoto, I. (1999). Pilot study of gas chromatographic-mass spectrometric screening of newborn urine for inborn errors of metabolism after treatment with urease. J. Chromatogr. B Biomed. Sci. Appl.731, 141–147.10.1016/S0378-4347(99)00205-4Search in Google Scholar

Matsumoto, I., and Kuhara, T. (1996). A new chemical diagnostic method for inborn errors of metabolism by mass spectrometry-rapid, practical, and simultaneous urinary metabolites analysis. Mass Spectrom. Rev.15, 43–57.10.1002/(SICI)1098-2787(1996)15:1<43::AID-MAS3>3.0.CO;2-BSearch in Google Scholar

Oliver, S. G., Winson, M.K., Kell, D.B., and Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends Biotechnol.16, 373–378.10.1016/S0167-7799(98)01214-1Search in Google Scholar

Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., Berden, J. A., Brindle, K. M., Kell, D. B., Rowland, J. J. et al. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol.19, 45–50.10.1038/83496Search in Google Scholar

Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N., and Willmitzer, L. (2000). Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J.23, 131–142.10.1046/j.1365-313x.2000.00774.xSearch in Google Scholar

Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., and Fernie, A. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell13, 11–29.10.1105/tpc.13.1.11Search in Google Scholar

Sahm, H., Eggeling, L., and de Graaf, A. A. (2000). Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol. Chem.381, 899–910.10.1515/BC.2000.111Search in Google Scholar

Schaefer, U., Boos, W., Takors, R., and Weuster-Botz, D. (1999). Automated sampling device for monitoring intracellular metabolite dynamics. Anal. Biochem.270, 88–96.10.1006/abio.1999.4048Search in Google Scholar

Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., and Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J. Proteome Res.2, 488–494.10.1021/pr034020mSearch in Google Scholar

Tweeddale, H., Notley-McRobb, L., and Ferenci, T. (1998). Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (‘metabolome’) analysis. J. Bacteriol.180, 5109–5116.10.1128/JB.180.19.5109-5116.1998Search in Google Scholar

Vallino, J. J., and Stephanopoulos, G. (1992). Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng.41, 633–646.Search in Google Scholar

Wittmann, C., and Heinzle, E. (2001a). Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum: a novel approach for metabolic flux analysis. Eur. J. Biochem.268, 2441–2455.10.1046/j.1432-1327.2001.02129.xSearch in Google Scholar

Wittmann, C., and Heinzle, E. (2001b). MALDI-TOF MS for quantification of substrates and products in cultivations of Corynebacterium glutamicum. Biotechnol. Bioeng.72, 642–647.10.1002/1097-0290(20010320)72:6<642::AID-BIT1030>3.0.CO;2-7Search in Google Scholar

Wittmann, C., and Heinzle, E. (2001c). Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab. Eng.3, 173–191.10.1006/mben.2000.0178Search in Google Scholar

Yamaguchi, S., Iga, M., Kimura, M., Suzuki, Y., Shimozawa, N., Fukao, T., Kondo, N., Tazawa, Y., and Orii, T. (2001). Urinary organic acids in peroxisomal disorders: a simple screening method. J. Chromatogr. B Biomed. Sci. Appl.758, 81–86.10.1016/S0378-4347(01)00102-5Search in Google Scholar

Published Online: 2005-06-01
Published in Print: 2004-09-01

© Walter de Gruyter

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2004.111/html
Scroll to top button