)
lINDERSCIENCE PUBLISHERS

V Linking academia, business and industry through research

Business
Intelligence and
Data Mining

International Journal of Business Intelligence and Data
Mining

ISSN online: 1743-8195 - ISSN print: 1743-8187
https://www.inderscience.com/ijbidm

Using unstructured logs generated in complex large-scale micro-
service-based architecture for data analysis

Anukampa Behera, Sitesh Behera, Chhabi Rani Panigrahi, Tien-Hsiung Weng

DOI: 10.1504/1)BIDM.2022.10043252

Article History:

Received: 03 October 2020
Accepted: 03 August 2021
Published online: 30 November 2022

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijbidm
https://dx.doi.org/10.1504/IJBIDM.2022.10043252
http://www.tcpdf.org

248

Int. J. Business Intelligence and Data Mining, Vol. 22, Nos. 1/2, 2023

Using unstructured logs generated in complex
large-scale micro-service-based architecture for
data analysis

Anukampa Behera

Department of Computer Science and Engineering,
ITER,

S‘O’A University,

Odisha, India

and

Department of Computer Science,

Rama Devi Women’s University,

Odisha, India

Email: anukampal @gmail.com

Sitesh Behera

Plivo Inc.,
Bengaluru, India
Email: sitesh.citzen@gmail.com

Chhabi Rani Panigrahi*

Department of Computer Science,
Rama Devi Women’s University, India
Email: panigrahichhabi@gmail.com
*Corresponding author

Tien-Hsiung Weng

Department of Computer Science and Information Engineering,
Providence University,

Taichung 43301, Taiwan

Email: thweng@gm.pu.edu.tw

Abstract: With deployments of complicated or complex large-scale
micro-service architectures the kind of data generated from all those systems
makes a typical production infrastructure huge, complicated and difficult to
manage. In this scenario, logs play a major role and can be considered as
an important source of information in a large-scale secured environment. Till
date, many researchers have contributed various methods towards conversion
of unstructured logs to structured ones. However, post conversion, the
dimension of the dataset generated increases many folds which are too
complex for data analysis. In this paper, we have discussed techniques and
methods to deal with extraction of all features from a produced structured log,

Copyright © 2023 Inderscience Enterprises Ltd.

Using unstructured logs generated

reducing /N-dimensional features to fixed dimensions without compromising
the quality of data in a cost-efficient manner that can be used for any further
machine learning-based analysis.

Keywords: json data; micro services; data parsing; principal component
analysis; PCA; multivariate data; unstructured data; tagged data; feature
reduction; reverse indexed database; profiling.

Reference to this paper should be made as follows: Behera, A., Behera, S.,
Panigrahi, C.R. and Weng, T-H. (2023) ‘Using unstructured logs generated
in complex large-scale micro-service-based architecture for data analysis’,
Int. J. Business Intelligence and Data Mining, Vol. 22, Nos. 1/2, pp.248-263.

Biographical notes: Anukampa Behera received her MTech in Computer
Science from the Biju Patnaik University of Technology, Odisha, India and
currently pursuing her PhD in Computer Science at the Ramadevi Women’s
University University, Bhubaneswar, India. She is working as an Assistant
Professor at the ITER, S‘O’A Deemed to be University, Bhubaneswar,
India and her research interests include security, anomaly detection, artificial
intelligence implementation. In the current study, implementation of the
modules with result analysis and overall systematic presentation of this
research work has been conducted by her.

Sitesh Behera is currently working as a Senior DevOPs Manager in the
Plivo Inc., India. He has 15+ years of experience in managing application
hosted on large-scale infrastructures. His job involves, infrastructure design,
development, management, capacity planning, automation of platform
components, and problem solving using Al. He has a research interest in
security and is an opensource enthusiast.

Chhabi Rani Panigrahi received her PhD in Computer Science and
Engineering from the IIT Kharagpur, India. She is currently an Assistant
Professor in the Department of Computer Science at the Rama Devi Women’s
University, Bhubaneswar, India. Prior to this, she was working as Assistant
Professor in the Central University of Rajasthan, India. Her research interests
include software testing, mobile cloud computing, and machine learning. She
holds 20 years of teaching and research experience. She has published several
international journals, conference papers, and books. She served as chairs and
technical program committee member in several conferences of international
repute.

Tien-Hsiung Weng is currently working as a Professor in the Department
of Computer Science and Information Engineering, Providence University,
Taichung City, Taiwan. He received his PhD in Computer Science from
the University of Houston, Texas. His research interests include parallel
computing, high performance computing, scientific computing, and machine
learning.

249

250 A. Behera et al.

1 Introduction

Logs generated from various systems are considered as one of the prime mechanism
for the purpose of analysis and studying the behaviour of an IT infrastructure. The
generated logs are regarded to be loaded with abundant information regarding the
various events generated from different subsystems including network switch, service
clusters, firewalls, office laptops, database, IPS/IDS solutions, etc. The data generated is
huge in volume. Now, it is a humongous task to prepare the data for any kind of analysis
as majority of the log portion are basically unstructured and sometimes semi-structured
(Tovarnak and Pitner, 2019). For any automated processing data needs to be structured,
normalised as well as suitable for visualisation. Hence various methods have evolved
and proposed in the past decade to prepare the data for analytics. The journey starts with
parsing the data and converting them to tuple format with later addition of count vectors
(Lou et al., 2010). These works have enabled us to primarily convert an unstructured
data to a structured format, thus creating a formatted dataset for us to attempt any kind
of data analytics on the available data.

However, we still have another problem with the data volume being very high.
Hence there have been some proposals to extract relevant fields out of the entire logline
and maintain the quality of data by introducing some rules of extraction (Breier and
BraniSova, 2015). With this approach we get reduced volume of data and relevant fields
which are needed for data analytics.

Having reached this stage we have identified that though we have relevant fields and
reduced volume, we end up with very high dimensional multivariate data. Analysing
multivariate data is complex, resource as well as time consuming. Hence, we would
like to propose a solution on how to reduce the dimensionality of data to only three
dimensions without losing the functionality of elements, retaining the quality of the data.
This approach will reduce the complexity involved in data analytics and becomes very
efficient method while dealing with real time systems.

The paper is organised as follows: Section 2 lists selected works done till date in the
field of unstructured log analysis. Section 3 describes the suggested method elaborately
and emphasises on the importance of data pre-processing. Experimental setups and
results are presented in Section 4. Final conclusion is given on Section 5.

2 Related work

In this section, various methods proposed for using unstructured log towards the purpose
of data analysis are discussed.

Xu et al. emphasised that, even a simple algorithm can achieve better results by
improvising the pre-processing methods. For experimentation purpose authors used
software monitoring system generated console log. Log parsing mechanism was used
for processing unstructured logs (Xu et al., 2009). Lou et al. used unstructured console
log for the purpose of anomaly detection after processing the log through log parser
there by converting them to tuple form. Then similar messages were grouped together
and uniquely represented using a unique count vector (Lou et al., 2010). Breier and
BraniSova used transaction blocks collected from several log sources. They created
rules for identifying each category of deviations and used a unique identifier for spatial
recognition of data. Towards the reduction of log analysis time, Hadoop technology

Using unstructured logs generated 251

was recommended (Breier and BraniSova, 2015). To cater the need for handling ad hoc
queries in large in-memory logs, Tandon et al. introduced hardware accelerator namely
HAWEK. It used hardware pipeline for scanning a constant chunk of input data for further
processing. The multiple characters input were examined in parallel within a span of
single accelerator clock cycle (Tandon et al., 2016). Various other methods like log-line
tokenisation, logs-key sequences, parsing based on attribute behaviour, etc. are used
by several researchers for handling unstructured data. But, most of these works were
based on standard datasets available. Tovarinak and Pitner suggested to convert the high
velocity unstructured logs generated from IT infrastructure to streams of structured event
objects (Tovarnak and Pitner, 2019).

How to use the high-velocity as well as very high-dimension data generated
from todays complicated micro-service architecture, cost effectively is still a trending
research topic. Our proposed method is a contribution towards achieving the above said
requirement, which is described in next section.

3 Proposed method

This section describes the steps involved in collection of real life data to handling
generated high volume of instance elaborately. A detailed flow chart of the entire
process is given in Figure 1.

Figure 1 Flow chart of the proposed method (see online version for colours)

Start

l

Input Data: HIDS logs post tagging
l file in json format

Conversion to readable format for processing

csv file

{ 1

Extraction of second dimension: time_slice
divide each day to smaller buckets and exraction of creation of third dimension: profile_id
bucket_id for temporal data

Extraction of first dimension
get event_source attribute

| categorical data handling: Apply one-hot encloding ‘

l data in numeric form

| feature selection : Apply PCA on each rule id ‘

principal atiributes for
each rul

bucket_id Dataset building: Get a union of all the PCA values

source_host obtained from all rule_ids to create a unique feature st

l master feature list

create unique_id: map the incoming dataset with
master feature list_Append 'U" to NULL values. The final
dataset created will have only values for features
provided in master feature st

is there a key available
for the dataset in reverse
indesed database ?

append the value of create a unique profile_id
profile_id tothe &——— and update to the in-
dafaset memory database

profile_id

Map source host. time bucket id, profile id
and all actual mapped data and write o a
datastore

|

end

252 A. Behera et al.

3.1 Data collection

Till date it is found that the best approach to get a structured and relevant data out of
the logs is to implement host-based intrusion detection system (HIDS) and to use its
output instead of working from the scratch with the raw data. HIDS is a holistic system
that can monitor and analyse the internals of a computing system as well as the network
package on its network interfaces (Wang and Zhu, 2017). A HIDS solution does all the
works proposed by various researchers till date starting from collection of all logs from
various sources, parsing them, adding counter vectors and attach them with rule IDs;
thus converting all unstructured data to structured and tagged data. In Figure 2, a sample
tagged output from a HIDS server in json format is shown which is structured as well
as tagged.

Figure 2 Structured and tagged HIDS output in the json format (see online version
for colours)

2018-86-06TA1:37:01+0538", "ruls el":3,"description”:"PAM: Login session
2", "firedtimes":1374, "mail": f
" pgl3_7.9"],"pci_dss"
ager™:
+"1528229221.155882","full_log":"
+ session closed for user r

"agent":{"id":"@16","name" :"bbs1p@l-

6 @1:36:59 bbslp@l-cmp-8@1 sudo:

"sudo”,"timestamp”:* & @1:36:59", "hostname”: 51p@l-cmp-281"}, "decoder”:
{"parent”:"pam"”,"name":"pam"},"data":{"dstuser”: "root"},"location":"/var/log/auth.log"}
= sson
o timestamp @ "2015-06-06T01:37:01+0530"
:I{}rula
u level : 3

® description : "PAM: Login session closed."
W id - "5502
® firedlimes : 1374
& mail : false
E] []graups
= [] pei_dss
H {} agent
=] {} manager
W id:"15282289221.155882"
o full_log : "Jun 6 01:356:59 bbs1p01-cmp-001 sudo: pam_unix(sudo session): session closed for user root”
H {} predecoder
] {} decoder
@ { }aata
W location : “ivarflog/auth log"

3.2 Conversion to readable format for processing

As data available in json format is not suitable for further processing, as the next step
it must be converted to a more formatted and readable csv form.

Now this converted dataset available in .csv format is N-dimensional data which we
have reduced to three dimensions in the following steps without losing any functionality
and successfully retaining the data quality.

3.3 Extraction of first dimension — source host

For any data analysis the source of event is a compulsory factor to be known. Thus
the first dimension that we retrieve from the obtained dataset is the ‘source host’ from
where the event is originated.

Using unstructured logs generated 253

3.4 Extraction of second dimension — time bucket

In this step, we take care of large volume of instances those are being produced by the
various logs that we have considered. So, we divide the entire 24 hours logs to smaller
sized buckets taken on a reduced time-stamp. Then each bucket must be marked with
a unique identifier which can be passed to the model per event. Here every instance
or sample is taken at a particular time. This instance belongs to a particular user and
each sample has multiple features. The number is selected on temporal basis, i.e., we
select the instances to create a subset based on a particular time period and this subset
which is ready to be passed to any analytics model. Thus the subset of the dataset are
all sample till a particular time and belong to all users who have tried to access the
system in that stipulated time period. We mathematically represent the notation for a
single sample which is taken at a certain time belonging to a certain user as follows:

Let X,, ; denote a sample (feature vector) taken at a time ¢, belonging to an user n.

Let Dicrr<t<r, C D ={Xy}Tm <t <7, denote the subset of all samples
taken with a time 7,,, and 7,,.

Let D denote the entire dataset that we selected after PCA.

A single sample for user n within a time period ¢ can be represented as

X,.€D (1)

3.5 Obtaining the third dimension by handling large number of features challenge
— profile ID

After obtaining the two necessary features, now the remaining of the N-dimensional
dataset obtained needs to be processed towards the goal of obtaining the third
dimensions. It involves several sub processes as listed below.

3.5.1 Conversion of categorical data to numeric data

Now, we get an output file which records a very high-dimensional data with most data
being categorical and derived. Categorical data refers to variables that contain labelled
or string values instead of numeric values. The number of unique variations for values
present in the domain is often limited to a fixed set. These variables are often called
nominal, like ‘protocol’ variable with the values: ‘ICMP’, ‘TCP’ and ‘UDP’. If the
values in the variable have natural relationship with each other they can be called
ordinal. For example, a ‘rank’ variable having values like ‘first’ and ‘second’. As many
of the machine learning algorithms cannot work directly on labelled data. So we convert
these categorical data to numerical data. An illustration of one-hot encoding mechanism
is shown in Figure 3.

Now as the attribute acts as the as input variables we need to apply some encoding
scheme to do the conversion, for which we are using one-hot encoding technique
(Brownlee, 2017). It is a coding scheme that is used very commonly. In this scheme
each level of the categorical variable is compared to a fixed reference level. In one hot
encoding a single variable with x observations and p unique values are transformed to
p binary columns with x instances each, where each instance depict participant (1) or
non-participant (0) value of the dichotomous binary variable (Potdar et al., 2017). In
Figure 3 we have illustrated the one-hot-encoding applied on the ‘feature’ attribute in a

254 A. Behera et al.
sample dataset. In the ‘feature’ variable there are three categories as ‘A’, ‘B’ and ‘C’.

So it creates three binary variables ‘Feature_A’, ‘Feature_B’ and ‘Feature_C’ which act
as dummy variables.

Figure 3 One hot encoding illustration (see online version for colours)

Feature Feature_A Feature_B Feature_C
A 1 0 0
B 0 1 0
(o] 0 0 1
B 0 1 0
[0 0 1
A . 1 0 0
A 1 0 0
[0 0 1
B 0 1 0
B 0 1 0
c 0 0 1
A 1 0 0

3.5.2 Feature selection

In this step, from a very large number of features we select a few features using
principal component analysis (PCA) based on rule IDs. PCA is an unsupervised linear
transformation technique. It is generally applied on high-dimensional data. Using PCA,
we find the correlation existing between the features, through which we can find pattern.
Using PCA the direction on which we get maximum variance is found and project it
to a new subspace that has either equal to or less number of features than the original
dataset was containing. Suppose we have (m,n) dimensional dataset where m is the
number of samples and n is the number of features. So using PCA, we create a (m, p)
dimension transformation matrix M such that it will allow mapping of a sample vector
‘a’ into a new p-dimensional subspace of features where p < n. Thus we transform
(m,n) dimension to (m,p) dimension, i.e., with a feature set of p. When we arrange
these features with descending order of variance, we get the first principal component
with highest importance. Instead of dropping any features PCA transforms them linearly
and creates new feature set (Raj, 2019). But as it is very sensitive to the range of data,
we must scale the data before passing them to PCA. For scaling and to find the relevant
features, we used the following steps as given below.

Step 1 The n-dimensional dataset was standardised.

Step 2 Co-variance matrix for n-dimension was drawn. Now covariance matrix can
be found by finding covariance between pair of features using the following
formula (https://education.howthemarketworks.com) to form the matrix.

i (Xi = X))(Yi —Y)
n—1

cov(, y) =

2

Using unstructured logs generated 255
to form the matrix (https://math.stackexchange.com)

var(X) cov(X,Y) cov(X, Z)
Z = | cov(X,Y) wvar(Y) cov(Y,Z) 3)
cov(X,Z) cov(Y,Z) wvar(Z)
Step 3 The eigenvalue and eigenvector were found from the above matrix.

Step 4 Then the top p eigenvalues were found and then the corresponding
eigenvectors were chosen.

Step 5 The projection of matrix M were constructed using top P eigenvectors.

Step 6 A scree plot to determine the number of principal components was drawn. A
scree plot represents the plot of eigenvalues ordered from largest to the
smallest. We determined a point, beyond which the remaining eigenvalues
were all relatively small and of comparable size. This point determined the
number of components (Vidal et al., 2016).

For example in Figure 4, we might want to stop at the fifth principal component. 87% of
the information (variances) contained in the data are retained by the first five principal
components. The number of component is determined at the point, now applying PCA
based on the rule IDs generated by HIDS; we select required number of features.

Figure 4 A sample scree plot (see online version for colours)
50 -
40-
30-
20-

10-

Percentage of explained variances

Dimensions

3.5.3 Creation of a common format

We take a union of the extracted PCA features of all rule IDs and create a common list
of features which will fit to all the input data. This gives a common format which can
be further grouped to find common features and frequency. For instance, rule ID 1 has
features 1, 3, 4, 5 and rule ID 2 has features 1, 2, 3, 4. So we take a union of all these
rule IDs. Here for a particular instance, in whichever field it has value we put the value
and where values are not available, i.e., NULL we are replacing it by ‘U’ — ‘undefined’.
So the output is in a common format where certain fields are populated and some are
U. This becomes a common structure where we have a common PCA value and are
grouped to a common format.

256 A. Behera et al.

3.5.4 Identifying patterns and uniquely represent them

Here, if we observed that majority of the features represent footprint of a user where
each instance is unique. So we keep them together as a pattern, use a random key
generator to generate a key which is alpha-numeric.

A set of attributes K is a super key for a relation 7 if r cannot contain two distinct
tuples t1 and t2 such that ¢1[k] = t2[k]. K is a key for r if k is minimal super key
(Martinez-Mosquera et al., 2020).

So these patterns along with the key are maintained in a reverse-indexed database.
Thus whenever this pattern is found we tag it with the key and store it in the N-column
database where all the data are maintained. Thus we can say each key represents a
profile, hence we are able to represent all the features related to the footprint of a user
as a single column; hence reducing the number of features drastically without anyway
compromising the quality of data. A reverse-indexed NoSQL database is used to store
the profile with an ID as key. Here the reverse-indexed database is used because, the
data input that we receive is in the form of a pattern, for which key needs to be searched.
And it is just the reverse of the process we use in a regular database management
system. Now the reason behind choosing a NoSQL database is, as the data volume is
huge we need a system which is capable of retrieving information very fast as well must
be able to scale at the same rate as the data volume becomes more and more. NoSQL
systems are distributed databases designed to cater to the demands of huge volume of
data. In the management and analysis of massive amounts of data it requires the system
to be highly scalable and fault-tolerant. NoSQL databases are coded in many distinct
programming languages and are generally available as open-source software (Aniceto
et al., 2015). NoSQL systems are also sometimes called ‘not only SQL’ to emphasise
that they may support SQL-like query languages, or sit alongside SQL databases in
polyglot persistent architectures (Fowler, 2012; Rouse, 2017).

3.6 Storage of signatures

Next, the signatures created per event type are sent to an in-memory data structure for
storing signature reference and a signature history. We are using in-memory database
because unlike database management system which store data primarily in the disks or
SSDs, an in-memory database stores data primarily on memory. These are a type of
non-relational database. As for any data retrieval, they do not need to access disks, the
response time in in-memory databases are minimal (Kabakus and Kara, 2017).

3.6.1 Final outcome

Hence in each time bucket we are representing the host, the footprint key, the number of
times each pattern is fired and the timestamp. So by using the above methods we can use
unstructured logs generated in complex large-scale micro-service-based architecture for
further data analysis and also are able to handle such high-dimensional data generated
efficiently without anyway losing any data that we receive originally.

Using unstructured logs generated 257

4 Experimental setup

In this section, the detailed experimental setup along with the results obtained is
presented and is shown as in Figure 5.

Figure 5 Experimental setup (see online version for colours)

logstash i }
L.
Eal

2 Message
OSSEC = | Queus
Server =
(Alerts. json) §
CASSANDRA
— R
& SPARK
REDIS - jobs

Elastic
Search

Kibana
Dashboard

Figure 6 Sample data received from OSSEC in json

I“timastamp':'2@18—06—36T23:59:2&+353G","rule":{"level':12,“dascription":'System runn;
,"linuxkernel®, "service_availability",f “gpgl3_4.12"], "pci_dss":["16.6.1"1}, "agent™: {"1
11 _log":"Jun & 23:59:22 rdip@l-pfm-@83 kernel: [17899895.437101] Memory cgroup out o

6 23:59:22", "hostname":"rdlp8l-pfm-e83"}, "decoder":{"name":"kernel"}, "location":"/vi
{"timestamp":"2018-06-856T23:59:25+053@", "rule": {"level":3, "description": "Successful s
13_7.13"],"pei_dss":["18.2.5","10.2.2" 1}, "agent": {"id":"803" , "name" : "rd1p@l-cmp-811",

-811 sudo: root : TTY=unknown ; PWD=/var/lib/collectd ; USER=root ; COMMAND=/sbin,
p=811"}, "decoder” :{"parent":"sudo", "name" :"sudo"}, "data”:{"srcuser":"root", "dstuser":
auth.log"}

{"timestamp":"2018-06-06T23:59:25+8530", "rule":{"level”:3,"description" :"PAM: Login s
v, 'gpgl3_7.9"],"pei_dss":["18.2.5"]},"agent" :{"id": " 883", "name" : "rdlp@l-cmp-811" ,"ip"
sudo: pam_unix(sudo:session): session opened for user root by (uid=8)","predecoder":
"}, "data":{"dstuser":"root", "uid":"8@"},"location":"/var/log/auth.log"}
{"timestamp":"2018-06-06T23:59:25+8530","rule":{"level”:3,"description":"PAM: Login s
["18.2.5"]},"agent":{"id":"883", "name" : "rdlp@l-cmp-811","ip":"1@.1.249.11"}, "manager"
ion): session closed for user root","predecoder":{"program_name":"sudo","timestamp":".
on":"/var/log/auth.log"}
{"timestamp":"2@18-06-06T23:59:25+@53@" ,"rule":{"level”:12, "description":"System runn:
,"linuxkernel®,“service_availability","gpgl3_4.12"],"pci_dss":["18.6.1" 1}, "agent™:{"1
11_log":"Jun & 23:59:23 rdip@l-pfm-283 kernel: [178@9896.349784] Memory cgroup out o
un & 23:59:23%, "hostname": "rdip@i-pfm-883"}, "decoder”:{"name": "kernel"}, "location®: ",
{"timestamp":"2018-06-06T23:59:25+0530", "rule":{"level":5, “description":"Systemd: Ser
cal","systemd","gpgl3_4.3"]},"agent": {"id":"878", "name" : "RD113APP6773166", "ip":"10.1.
md(1]: consul.service: Unit entered failed state.","predecoder":{"program_name":"syst
{"timestamp”:"2018-06-06T23:59:26+0530", "rule":{"level”:3, “description": "Successful s
13_7.13"],"pci_dss":["10.2.5","10.2.2"]}, "agent": {"id": "678" , "name": "rd1lp@l-cmp-018",

-818 sudo: root : TTY=unknown ; PWD=/var/lib/collectd ; USER=root ; COMMAND=/sbin,
p-818"}, "decoder”:{"parent":"sudo"”, "name" :"sudo"}, "data”: {"srcuser":"root", "dstuser":
auth.log"}

{"timestamp":"2018-06-06T723:59:2640530", "rule":{"level”:3,"description":"PAM: Login s
", "gpgl3_7.9"],"pci_dss":["10.2.5")},"agent" :{"id":" 678", "name" : "rd1p@l-cmp-018", " ip"
sudo: pam_unix(sudo:session): session opened for user root by (uid=@)","predecoder":

258 A. Behera et al.

4.1 Data collection

For our experiment, we have used Open Source HIDS Security (OSSEC), the HIDS
server installed for Rama Devi Women’s University. The reason behind choosing
OSSEC is that, it produces a structure file that complied with all the prerequisites needed
for our work — instead of storing all logs, it stores only alerts those are generated based
on some rule ID (Jain and Trivedi, 2016). In Figure 6, we have provided a part of the
json file that we received from OSSEC server. OSSEC being open-source, we write
our own rules and rule-IDs. For that we used OSSEC HIDS to collect all the system,
authentication, router, switch, firewall activation logs from various sources. OSSEC
converts all such unstructured data to structured, tagged data with appropriate alert-IDs
and level-IDs and produces a formatted output of raw logs which we received in json
format.

4.2 Data conversion

We designed an API for conversion of json data to .csv format so that the data becomes
more readable and ready for further processing. In Figure 7, we have given a part of
the .csv file that we generated from the json file received from OSSEC.

Figure 7 Data after conversion to .csv (see online version for colours)

c o E F G H [
3 Successful suda to ROOT axetuted 5402 9 FALSE syslog suda EPgl3_76
3 PAM: Login session opened, 5501 9 FALSE pam syslog authentication_success
3 Successful sudo to ROOT executed 5402 10 FALSE syslog sudo gPgl3_t.&
3 PAM: Login session opened. 5501 10 FALSE pam syslog authentication_success
3 Successiul sudo to ROOT executed 5402 11 FALSE sysiog sudo gPgll_76
3 PAM: Login session opened, 5501 11 FALSE pam syslag authentication_success
3 Successful sudo to ROOT executed 3402 12 FALSE syshog suda gpgl3_7
3 PAM: Login session opened. 5500 12 FALSE pam syslog authentication_success
3 Successful sudo to ROOT exequted 5402 13 FALSE syslog suide ERgl3_76
3 PAM: Login session opened, 5501 13 FALSE pam syslog authentication_success
3 Successful sudo to ROOT executed 5402 14 FALSE syslog sudo gPgl3_76
3 PAM: Login se55i0n opened, 5501 14 FALSE pam syslog authentication_success
¥ Successiul sudo to ROOT executed 502 15 FALSE syslog sudo gogli_ 7.6
3 PAM: Login session opened. 5501 15 FALSE pam syslog authenticition_success
3 Successful sudo to ROOT executed 5402 16 FALSE syshog sudo BPgl3_76
3 PAM: Login session opened, 5500 16 FALSE pam syslog authentication_success
3 Suecessful sudo to ROOT exetuted 5402 17 FALSE syslog sudo g0g1_7.6
3 PAM: Login session opened. 5501 17 FALSE pam syslog authentication_success
7 File system full. 1007 5 FALSE syslog wrrors low_diskspace
7 File system full 1007 6 FALSE syslog errors lawy_liskspace
3 Swccessful sudo to ROOT executed 3802 18 FALSE syslog sudo goglid_7.6
3 PAM: Login session opened. 5501 18 FALSE pam syslog authentication_success
3 Successful sudo to ROOT executed 5402 19 FALSE sysiog sudo gpgli_76
3 PAM: Login session opened, 5501 19 FALSE pam syslog Authentication_success
3 Successful sudo to ROOT executed 02 20 FALSE syslog suda Apgld 7.6

o e |

[HEF T (ee———

4.3 Data cleaning

After we extracted features from the file, it came out to be more than 100 features and
most of the features were categorical and derived data. We applied one-hot encoding
mechanism to convert this categorical data to individual columns where the column
values were 0 or 1 corresponding to which column it has been placed. Figure 8 shows
the screenshot of columns generated after one-hot encoding was applied and Figure 9
shows the total feature those got generated after on-hot encoding was applied to all the
categorical columns we had in our dataset.

Using unstructured logs generated 259

Figure 8 Columns generated before and after one-hot encoding

location TimeStamp Data_srcip Data_dstuser Agent_name Agent_id Rule_level Rule_description Rule_id |
2018-12-02 seid
0 /varllog/auth.log 000229 172.16.33.226 varsham blr1p01-cmp-008 1993 3 authentication 5715
: SUCCESS.
2018-12-02 sshd
1 /varllog/auth.log 002914 172.168.33.226 varsham blr1p01-cmp-008 1993 3 authentication 5715
b success
2 & 2018-12-03 . _sshd
var/log/auth.log 06:32:13 10.253.201.10 infra blr1p01-god-001 2165 & authentication 5715
: SUCCESS.
s 2018-12-03) sshd
var/log/auth.log 070915 10.253.201.10 infra bir1p01-god-001 2165 3 authentication 5715
. success.
2018-12-04 . sshd
4 /varflog/auth.log 07-39:56 172.16.32.52 praveen BO51APP8274175 2359 & authentication 5715

success.

@timestamp_labels.2018- @timestamp_labels.2018- @timestamp_labels.2018- @timestamp_labels.2018- @timestamp_labels.2018-

12-02T18:30:06.806Z 12-02T18:30:09.811Z 12-02T18:30:12.8152 12-02T718:30:18.822Z 12-02718:30:23.8372
) 0.0 0.0 0.0 0.0 00
1 00 00 00 00 ()
2 0.0 00 00 00 00
3 0.0 0.0 00 0.0 00
4 00 o0 no o0 o0

Figure 9 Total features generated after one-hot encoding

BB 4+ % MHRuin B C W Code v =

['Data_srcuser’, ‘Agent_id’, 'Rule_firedtimes', °'T_Bucket', 'Data_dstuser_labels', ‘Agent_name_label
s', 'Precoder_hostname_labels', 'Precoder_program_name_labels', 'Data_dstuser_labels.exam’, ‘Data_dst
user_labels.rajesh.mahapatra’, ‘Data_dstuser_labels.shapath.purohit', 'Data dstuser_labels.medha’, 'D
ata dstuser_labels.root”, "Data_dstuser labels.shadma’, 'Data_dstuser_labels.anand', ‘Data_dstuser_la
bels.venum®, "Agent name labels.Be51APP942488e", ‘Agent_name_labels.bbslp@l-cmp-ees8’, 'Agent_name_lab
els.bbs1pel-dbs-@e2°, ‘Agent_name_labels.bbsipel-god-eel’', 'Agent_name_labels.bbsipel-god-ee2', ‘Agen
t_name_labels.bbsipel-mon-e@1’, ‘Agent_name_labels.bbsipei-pfm-eez2’, ‘agent_name_labels.bbsipel-pfm-e
93", “Agent_name_labels.bbsipel-vcm-ee1’, 'Agent_name_labels.bbsipol-vem-902', ‘Agent_name_labels.bbs
ipel-vdb-9e1', 'Agent_name_labels.bbsipei-vdb-002°, ‘Precoder_hostname_labels.B@51APP942488a°, 'Preco
der_hostname_labels.bb-bbs-adm-vaultcompute-@1', 'Precoder_hostname_labels.bb-bbs-adm-vaultcompute-@
2', 'Precoder_hostname_labels.bbsip@l-cmp-888", 'Precoder_hostname_labels.bbsipel-goed-ea1’, 'Precoder
_hostname_labels.bbs1p@1-god-802', 'Precoder_hostname_labels.bbsipel-mon-@01', 'Precoder_hostname_lab
els.bbsip@l-pfm-862°, 'Precoder_hostname_labels.bbslp@l-pfm-003', 'Precoder_hostname_labels.bbsipél-v

db-002', 'Precoder_hostname_labels.localhost', 'Precoder_program_name_labels.sshd', 'Precoder_program
_name_labels.su', 'Precoder_program_name_labels.sudo®, 'Precoder_program_name_labels.systemd’]
43

4.4 Feature extraction

Now as we got clean data, we applied PCA based on the rule ID for feature extraction
purpose. PCA assumes that the directions with the largest variances are the most
‘important’ (i.e., the most principal), we first found the eigenvalue because the amount
of variance retained by each principal component is measured by the eigenvalue.
Eigenvalues are large for the first PCs and small for the subsequent PCs. That is, the first
PC corresponds to the directions with the maximum amount of variation in the dataset.
Figure 10 shows the screenshot of all features along with explained_variance_ratio after
PCA and the Scree plot drawn for all features with their variance plotted in descending
order is shown in Figure 11.

From the Figures 10 and 11 plot, we extracted 41 features those were of maximum
relevance.

After applying PCA, we combined all PCA values across all rule IDs by making the
union of them, to create a unique list of principal components. In case of the unavailable
information for any attribute, we replaced it by ‘U’. Hence now a format could be

260 A. Behera et al.

created based on which we can check which alert is fired. So we grouped all alerts from
a particular rule IDs under frequency attribute. Then we chose the source_host from
which the alert is generated and timestamp at which it is generated. Now the remaining
attributes basically were representing the footprint of a user from the moment he has
entered the system till the moment he leaves the same. So next we grouped all the
features related to user foot print and maintained them separately under a name ‘profile’.
Here each profile has a unique signature. Each signature we uniquely identified with a
profile_id — thus further reducing features in the dataset. All these form a proper dataset
to be processed. Now algorithm can be applied to pull data, pass it to the model, identify
the outliers and reports them as anomalies. Now in order to deal with the high volume
of data we must deal with smaller chunk at-a-time. We freeze the slot to be monitored
on each 15 minutes. To implement this, we divided the 24 hours logs to 15 minutes
time buckets, where each bucket is uniquely identified by bucket-ID. Thus finally we
arrive at to only three without making any compromise with data quality.

Figure 10 Screenshot of features along with variance

{('Agent_id_PCA’,): ©.8222010751022796,
('Rule_firedtimes_PCA',): ©.177630@4652147104,
('T_Bucket_PCA',): 8.747173884965891e-05,
('Data_dstuser_labels_PCA',): 1.76785135483357%7e-05,
("Agent_name_labels_PCA",): 2.2839672853472474e-06,
("Precoder_program name labels PCA',): 2.2552388830477263=-86,
('Precoder_hostname_labels PCA’,): 2.84961196816613e-06,
('Data_dstuser_labels.infra_PCA",): 1.78922620789726@1e-06,
('Data_dstuser_labels.jegan_PCA",): 1.56668314881985086e-06,
('Data_dstuser_labels.manishkumar.singh_PCA",): 1.123484785281976%e-0@6,
('Data_dstuser_labels.root_PCA',): 1.8907483346354132e-06,
('Data_dstuser_labels.shiny PCA',): ©.304410858536195e-07,
('Data_dstuser_labels.venum_PCA",): 3.773211956263694e-87,
(*Agent_name_labels.B@51APP6@@6@SS_PCA',): 1.837713301558657e-07,
('Agent_name_labels.B@51APP9424880_PCA',): 7.741313633731444¢-08,
("Agent_name_labels.blrlpel-cmp-@@8_PCA",): 5.5561181543311396e-08,
('Agent_name_labels.blrip@l-dbs-882_PCA",): 1.5565468823469425e-88,
('Agent_name_labels.blrip@l-god-881_PCA',): 7.9777868391628582-33,
('Agent_name_labels.blrip@l-god-882_PCA',):

T

Figure 11 Scree plot for all features with variance (see online version for colours)

0.05 A

Percentage of explained variances

0.00 -
o 20 40 60 80 100 120

Dimensions

As a final result, we reduced the high dimensional data produced to only three features,
i.e., profile, source host and time of the day which we expressed as bucket-ID.

Using unstructured logs generated 261
4.5 Storage of data for reference

Each profile that got created with a unique feature set, has the data ‘profile’ as constant
which enabled us to create signatures per event type. Hence every unique event has a
unique signature. We used reverse indexed in-memory database server — Redis to store
signature reference as we need to find the unique signature ID from the log. For the
purpose of storing signature reference we used an in-memory database Redis. Redis
is open source software with BSD license. Redis, is a fast, open-source, in-memory
key-value data store which is used as a database, cache, message broker, and queue.
All Redis data resides in-memory, very unlike the databases that store data on disk or
SSDs. As the need to access disks is no more required, seek time delays are avoided
in in-memory data stores such as Redis and the data can be accessed in microseconds.
Redis features versatile data structures, high availability, geospatial, Lua scripting,
transactions, on-disk persistence, and cluster support making it simpler to build real-time
internet scale apps. Next in order to store signature data we used Cassandra — a NoSQL
database. Apache Cassandra is a highly scalable, high-performance distributed database.
It is designed to handle large amounts of data across many commodity servers, providing
high availability with no single point of failure. It performs efficiently on ‘read’ queries,
thus is highly recommendable for ‘read heavy’ database. So we stored the profiles here
and used profile_id as a representative for each instance in our dataset. To summarise,
we put the dataset created hence and get a unique identifier which is an alpha-numeric
identifier. We store it to a reverse-indexed database Redis. Now, the stream will look
for all fields along with the unique value, if available it stamps it and if it is not there it
will create and stamp it. Next it is written to CASSANDRA which can be put to model
for further processing.

5 Conclusions and future work

In this paper, we have proposed profiling method on the JSON output of OSSEC/HIDS
logs those are generated in complex large-scale micro-service-based installations for
analysis purpose. This method works for further reduction of N-features to only three
dimensions, so we can perform any analytics and visualise the data, once a standard
feature selection technique is applied. Finally use of in-memory DB and NoSQL
database servers enable us to handle large volume of instances easily for further
processing of finding out anomalies in case of complex micro-service architecture. But
the limitation in the proposed setup becomes heavy for small infrastructures. We need to
constantly modify the unique feature list as and when we get more rules from OSSEC.
Once we build data lakes, i.e., we push all logs to a distributed streaming platform;
OSSEC that we have used being a monolithic system, may not be able to handle such
high-volume data. OSSEC is also modified to handle more than 1,500 clients. Hence
we need to create clusters of OSSEC to handle large installations. In this case we can
have an analytics engine for big data processing, with built-in modules for streaming,
mapping features and creating profile ID. Thus to make the conversion engine scalable
how to use big data analytics engine will be the focus of our study in future. The
spark jobs enable us to scale horizontally and handle huge incoming data which can be
processed in large numbers. A REDIS cluster can help us also handle huge amount of

262 A. Behera et al.

unique events. The key to maintain such systems is to do a regular purge job so we can
keep tab on the volume of data in data stores.

References

Aniceto, R., Xavier, R., Guimaries, V., Hondo, F., Holanda, M., Walter, M.E. and Lifschitz, S. (2015)
‘Evaluating the Cassandra NoSQL database approach for genomic data persistency’, International
Journal of Genomics [online] https://doi.org/10.1155/2015/502795.

Breier, J. and BraniSova, J. (2015) ‘Anomaly detection from log files using data mining techniques’,
in Information Science and Applications, pp.449-457, Springer, Berlin, Heidelberg.

Brownlee, J. (2017) Why One-Hot Encode Data in Machine Learning?, 28 July [online]
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/ (accessed 26
February 2020).

Fowler, M. (2012) NoSQL Definition, 9 January [online] https://martinfowler.com/bliki/
NosqlDefinition.html (accessed 24 February 2020).

Jain, R.K. and Trivedi, P. (2016) ‘OSSEC based authentication process with minimum encryption
and decryption time for virtual private network’, in 2016 S8th International Conference on
Computational Intelligence and Communication Networks (CICN), 1IEEE, pp.442—445.

Kabakus, A.T. and Kara, R. (2017) ‘A performance evaluation of in-memory databases’, Journal
of King Saud University — Computer and Information Sciences, Vol. 29, No. 4, pp.520-525,
DOLI: 10.1016/j.jksuci.2016.06.007.

Lou, J-G., Fu, Q., Yang, S., Xu, Y. and Li, J. (2010) ‘Mining invariants from console logs for system
problem detection’, in USENIX Annual Technical Conference, pp.23-25.

Martinez-Mosquera, D. et al. (2020) ‘Modeling and management big data in databases — a systematic
literature review’, Sustainability, Vol. 12, No. 2, p.634.

Potdar, K., Pardawala, T. and Pai, C. (2017) ‘A comparative study of categorical variable encoding
techniques for neural network classifiers’, International Journal of Computer Applications,
Vol. 175, pp.7-9, DOI: 10.5120/ijca2017915495.

Raj, A. (2019) Feature Reduction Using — PCA & LDA, 23 January [online] https://medium.com/
(@adityaraj_64455/feature-reduction-using-pca-1da-338b9fe64f59 (accessed 21 February 2020).

Rouse, M. (2017) NoSQL (Not Only SQL Database) [online] https://searchdatamanagement.
techtarget.com/definition/NoSQL-Not-Only-SQL (accessed 24 February 2020).

Tandon, P., Sleiman, F.M., Cafarella, M.J. and Wenisch, T.F. (2016) ‘HAWK: hardware support for
unstructured log processing’, 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), pp.469-480, DOI: 10.1109/ICDE.2016.7498263.

Tovarnak, D. and Pitner, T. (2019) ‘Normalization of unstructured log data into streams of structured
event objects’, 2019 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), pp.671-676.

Vidal, R., Ma, Y. and Sastry, S.S. (2016) ‘Principal component analysis’, in Generalized Principal
Component Analysis, pp.25-62, Springer, New York, NY.

Wang, Z. and Zhu, Y. (2017) ‘A centralized HIDS framework for private cloud’, /8th IEEE/ACIS
International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), Kanazawa, pp.115-120.

Xu, W., Huang, L., Fox, A., Patterson, D. and Jordan, M.I. (2009) ‘Detecting large-scale system
problems by mining console logs’, Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles — SOSP ‘09, DOI: 10.1145/1629575.1629587.

Using unstructured logs generated 263

Websites
https://education.howthemarketworks.com/covariance-analysis/ (accessed 21 February 2020).

https://math.stackexchange.com/questions/885410/covariance-matrix-of-various-x-y-z-
cartesian-coordinates (accessed 21 February 2020).

https://redis.io (accessed 10 April 2020).
https://aws.amazon.com/redis/ (accessed 10 April 2020).

http://cassandra.apache.org/ (accessed 6 April 2020).

