skip to main content
research-article

Robust query processing: mission possible

Published:01 August 2020Publication History
Skip Abstract Section

Abstract

Robust query processing with strong performance guarantees is an extremely desirable objective in the design of industrial-strength database engines. However, it has proved to be a largely intractable and elusive challenge in spite of sustained efforts spanning several decades. The good news is that in recent times, there have been a host of exciting technical advances, at different levels in the database architecture, that collectively promise to materially address this problem. In this tutorial, we will present these novel research approaches, characterize their strengths and limitations, and enumerate open technical problems that remain to be solved to make robust query processing a contemporary reality.

References

  1. Robust Query Processing. Dagstuhl Seminar 10381, 2010.Google ScholarGoogle Scholar
  2. Robust Query Processing. Dagstuhl Seminar 12321, 2012.Google ScholarGoogle Scholar
  3. Robust Performance in Database Query Processing. Dagstuhl Seminar 17222, 2017.Google ScholarGoogle Scholar
  4. M. Akdere, U. Cetintemel, M. Riondato, E. Upfal and S. Zdonik. Learning-based query performance modeling and prediction. ICDE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Avnur and J. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Babu, P. Bizarro and D. DeWitt. Proactive Re-optimization. SIGMOD, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski and C. Fraser. Smooth Scan: Robust Access Path Selection without Cardinality Estimation. VLDBJ, 27(4):521--545, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Chaudhuri. An Overview of Query Optimization in Relational Systems. PODS, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Chaudhuri. Query Optimizers: Time to rethink the contract? SIGMOD, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Chaudhuri. Interview in XRDS, 19(1), 2012.Google ScholarGoogle Scholar
  11. F. Chu, J. Halpern and P. Seshadri. Least Expected Cost Query Optimization: An Exercise in Utility. PODS, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. F. Chu, J. Halpern and J. Gehrke. Least Expected Cost Query Optimization: What can we expect? PODS, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. DeWitt. Interview in Sigmod Record, 31(2), 2002.Google ScholarGoogle Scholar
  14. A. Dutt and J. Haritsa. Plan Bouquets: A Fragrant Approach to Robust Query Processing. ACM TODS, 41(2): 11:1--11:37, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Dutt, V. Narasayya and S. Chaudhuri. Leveraging re-costing for online optimization of parameterized queries with guarantees. SIGMOD, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya and S. Chaudhuri. Selectivity estimation for range predicates using lightweight models. PVLDB, 12(9):1044--1057, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Graefe. New algorithms for join and grouping operations. Computer Science - R&D, 27(1):3--27, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Harish, D., P. Darera and J. Haritsa. On the Production of Anorexic Plan Diagrams. VLDB, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Harish, D., P. Darera and J. Haritsa. Identifying Robust Plans through Plan Diagram Reduction. PVLDB, 1(1):1124--1140, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. Harmouch and F. Naumann. Cardinality Estimation: An Experimental Survey. PVLDB, 11(4):499--512, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas and G. Das. Deep Learning Models for Selectivity Estimation of Multi-attribute Queries. SIGMOD, 2020. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Havenstein, P. Lysakovski, N. May, G. Moerkotte and G. Steidl. Fast Entropy Maximization for Selectivity Estimation of Conjunctive Predicates on CPUs and GPUs. EDBT, 2020.Google ScholarGoogle Scholar
  23. R. Hayek and O. Shmueli. Improved Cardinality Estimation by Learning Queries Containment Rates. EDBT, 2020.Google ScholarGoogle Scholar
  24. N. Kabra and D. DeWitt. Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution Plans. SIGMOD, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Karthik, J. Haritsa, S. Kenkre, V. Pandit and L. Krishnan. Platform-independent Robust Query Processing. IEEE TKDE, 31(1):17--31, 2019.Google ScholarGoogle Scholar
  26. S. Karthik, J. Haritsa, S. Kenkre and V. Pandit. A Concave Path to Low-overhead Robust Query Processing. PVLDB, 11(13):2183--2195, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Kiefer, M. Heimel, S. Bress and V. Markl. Estimating Join Selectivities using Bandwidth-Optimized Kernel Density Models. PVLDB, 10(13):2085--2096, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz and A. Kemper. Learned Cardinalities: Estimating Correlated Joins with Deep Learning. CIDR, 2019.Google ScholarGoogle Scholar
  29. V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper and T. Neumann. Query Optimization through the looking glass, and what we found running the Join Order Benchmark. VLDBJ, 27(5):643--668, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. V. Leis, B. Radke, A. Gubichev, A. Kempers and T. Neumann. Cardinality Estimation Done Right: Index-based Join Sampling. CIDR, 2017.Google ScholarGoogle Scholar
  31. Z. Li, O. Papaemmanouil and M. Cherniack. OptMark: A Toolkit for Benchmarking Query Optimizers. CIKM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. G. Lohman. Is Query Optimization a "Solved" Problem? ACM Sigmod Blog, 2014. wp.sigmod.org/?p=1075.Google ScholarGoogle Scholar
  33. T. Malik, R. Burns and N. Chawla. A Black-Box Approach to Query Cardinality Estimation. CIDR, 2007.Google ScholarGoogle Scholar
  34. R. Marcus and O. Papaemmanouil. Towards a Hands-Free Query Optimizer through Deep Learning. CIDR, 2019.Google ScholarGoogle Scholar
  35. V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh and M. Cilimdzic. Robust query processing through progressive optimization. SIGMOD, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. G. Moerkotte, T. Neumann and G. Steidl. Preventing Bad Plans by Bounding the Impact of Cardinality Estimation Errors. PVLDB, 2(1):982--993, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. P. Negi, R. Marcus, H. Mao, N. Tatbul, T. Kraska and M. Alizadeh. Cost-Guided Cardinality Estimation: Focus Where it Matters. IEEE ICDE Workshops, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  38. K. Ramachandra, K. Park, K. Emani, A. Halverson, C. Galindo-Legaria and C. Cunningham. Froid: Optimization of Imperative Programs in a Relational Database. PVLDB, 11(4):432--444, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. W. Roediger, S. Idicula, A. Kemper and T. Neumann. Flow-join: Adaptive skew handling for distributed joins over highspeed networks. ICDE, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  40. J. Sun and G. Li. An End-to-End Learning-based Cost Estimator. PVLDB, 13(3):307--319, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. K. Tzoumas, A. Deshpande and C. Jensen. Efficiently adapting graphical models for selectivity estimation. VLDBJ, 22(1):3--27, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Wiener, H. Kuno and G. Graefe. Benchmarking Query Execution Robustness. TPCTC, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. F. Wolf, M. Brendle, N. May, P. Willems, K. Sattler and M. Grossniklaus. Robustness Metrics for Relational Query Execution Plans. PVLDB, 11(11):1360--1372, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. W. Wu, Y. Chi, H. Hacigumus and J. Naughton. Towards predicting query execution time for concurrent and dynamic database workloads. PVLDB, 6(10):925--936, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigumus and J. Naughton. Predicting query execution time: Are optimizer cost models really unusable? ICDE, 2013.Google ScholarGoogle Scholar
  46. W. Wu, J. Naughton and H. Singh. Sampling-based Query Re-optimization. SIGMOD, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. W. Wu, X. Wu, H. Hacigumus and J. Naughton. Uncertainty Aware Query Execution Time Prediction. PVLDB, 7(14):1857--1868, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Z. Yang et al. Deep Unsupervised Selectivity Estimation. PVLDB, 13(3):279--292, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 13, Issue 12
    August 2020
    1710 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    • Published: 1 August 2020
    Published in pvldb Volume 13, Issue 12

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader