skip to main content
research-article

Multi-query optimization for subgraph isomorphism search

Published:01 November 2016Publication History
Skip Abstract Section

Abstract

Existing work on subgraph isomorphism search mainly focuses on a-query-at-a-time approaches: optimizing and answering each query separately. When multiple queries arrive at the same time, sequential processing is not always the most efficient. In this paper, we study multi-query optimization for subgraph isomorphism search. We first propose a novel method for efficiently detecting useful common sub-graphs and a data structure to organize them. Then we propose a heuristic algorithm based on the data structure to compute a query execution order so that cached intermediate results can be effectively utilized. To balance memory usage and the time for cached results retrieval, we present a novel structure for caching the intermediate results. We provide strategies to revise existing single-query subgraph isomorphism algorithms to seamlessly utilize the cached results, which leads to significant performance improvement. Extensive experiments verified the effectiveness of our solution.

References

  1. F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph matching by postponing cartesian products. In SIGMOD, pages 1199--1214, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Bruno, L. Gravano, N. Koudas, and D. Srivastava. Navigation-vs. index-based XML multi-query processing. In ICDE, pages 139--150, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  3. L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism algorithm for matching large graphs. Pattern Anal. Mach. Intell., IEEE Trans, 26(10):1367--1372, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Edenbrandt. Quotient tree partitioning of undirected graphs. BIT Numerical Mathematics, 26(2):148--155, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. W. Fan, Z. Fan, C. Tian, and X. L. Dong. Keys for graphs. PVLDB, 8(12):1590--1601, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. W. Fan, X. Wang, Y. Wu, and J. Xu. Association rules with graph patterns. PVLDB, 8(12):1502--1513, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. W. Fan, Y. Wu, and J. Xu. Functional dependencies for graphs. In SIGMOD, pages 1843--1857, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. J. Finkelstein. Common subexpression analysis in database applications. In SIGMOD, pages 235--245, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. W.-S. Han, J. Lee, and J.-H. Lee. TurboIso: towards ultrafast and robust subgraph isomorphism search in large graph databases. In SIGMOD, pages 337--348, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. He and A. K. Singh. Query language and access methods for graph databases. In Manag. and Min. Graph Data, pages 125--160. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. M. Hong, A. J. Demers, J. E. Gehrke, C. Koch, M. Riedewald, and W. M. White. Massively multi-query join processing in publish/subscribe systems. In SIGMOD, pages 761--772, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. H. Hung, S. S. Bhowmick, B. Q. Truong, B. Choi, and S. Zhou. Quble: towards blending interactive visual subgraph search queries on large networks. VLDB, pages 401--426, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable multi-query optimization for SPARQL. In ICDE, pages 666--677, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth comparison of subgraph isomorphism algorithms in graph databases. In VLDB, pages 133--144, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Natarajan. Undertsanding the structure of a drug trafficing organization: a converational analysis. Crime Preventon Studies, 11:273--298, 2000.Google ScholarGoogle Scholar
  16. Y. Q and S. SH. Path matching and graph matching in biological networks. J Comput Biol, 14(1):56--67, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  17. X. Ren and J. Wang. Exploiting vertex relationships in speeding up subgraph isomorphism over large graphs. PVLDB, 8(5):617--628, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Sellis and S. Ghosh. On the multiple-query optimization problem. TKDE, (2):262--266, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. K. Sellis. Multiple-query optimization. TODS, 13(1):23--52, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness: an efficient algorithm for testing subgraph isomorphism. PVLDB, 1(1):364--375, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph matching on billion node graphs. PVLDB, 5:788--799, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. R. Ullmann. An algorithm for subgraph isomorphism. JACM, 23(1):31--42, 1976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. P. Zhao and J. Han. On graph query optimization in large networks. PVLDB, 3:340--351, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Multi-query optimization for subgraph isomorphism search
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader