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Abstract—Automatic speech recognition (ASR) provides di-
verse audio-to-text services for humans to communicate with
machines. However, recent research reveals ASR systems are
vulnerable to various malicious audio attacks. In particular,
by removing the non-essential frequency components, a new
spectrum reduction attack can generate adversarial audios that
can be perceived by humans but cannot be correctly interpreted
by ASR systems. It raises a new challenge for content moder-
ation solutions to detect harmful content in audio and video
available on social media platforms. In this paper, we propose
an acoustic compensation system named ACE to counter the
spectrum reduction attacks over ASR systems. Our system design
is based on two observations, namely, frequency component
dependencies and perturbation sensitivity. First, since the Discrete
Fourier Transform computation inevitably introduces spectral
leakage and aliasing effects to the audio frequency spectrum,
the frequency components with similar frequencies will have a
high correlation. Thus, considering the intrinsic dependencies
between neighboring frequency components, it is possible to
recover more of the original audio by compensating for the
removed components based on the remaining ones. Second, since
the removed components in the spectrum reduction attacks can be
regarded as an inverse of adversarial noise, the attack success rate
will decrease when the adversarial audio is replayed in an over-
the-air scenario. Hence, we can model the acoustic propagation
process to add over-the-air perturbations into the attacked audio.
We implement a prototype of ACE and the experiments show that
ACE can effectively reduce up to 87.9% of ASR inference errors
caused by spectrum reduction attacks. Furthermore, by analyzing
the residual errors on real audio samples, we summarize six
general types of ASR inference errors and investigate the error
causes and potential mitigation solutions.

I. INTRODUCTION

The development of artificial intelligence has driven the
popularity of automatic speech recognition (ASR) systems,
which have been integrated into human-computer interaction
services such as Amazon Alexa [9], Apple Siri [59], Google
Assistant [10], and Microsoft Cortana [23] to transform speech
signals into text transcriptions. By sending voice commands,
ASR systems free users’ hands and make it more convenient
to control their smart home devices [34], send messages to
their friends [17], or navigate to their destinations [44].

Meanwhile, recent studies have shown ASR systems are

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA

ISBN 1-891562-93-2

https://dx.doi.org/10.14722/ndss.2024.23150
www.ndss-symposium.org

vulnerable to various malicious voice attacks [29], [67], [50],
[38], [69], [57], [81], [61], [56], [1], [15], [58], [26], [16],
[80], [27]. As an alternative representation of voice signals,
frequency spectrum has been manipulated by attackers to
achieve different attacking goals. By adding high frequency
components out of the voice band, attackers can launch
spectrum addition attacks to generate the audio that can be
interpreted by machines but incomprehensible to humans [1].
In contrast, by removing the frequency components of weak
strength from the audio spectrum, an attacker can launch
spectrum reduction attacks to generate the audio that can
be perceived by humans but cannot be correctly interpreted
by machines [3], [2]. Moreover, attackers can manipulate
the spectrum magnitude with a specific filter to bypass the
spectrum-based detection mechanisms [69]. The spectrum ad-
dition attacks can be effectively mitigated by voice band-pass
filters [1]; however, there is no effective defense mechanism
resolving the spectrum reduction attacks.

Spectrum reduction attack removes certain frequency com-
ponents whose magnitudes are less than a specific threshold.
Though the removed frequency components have low intensity,
they are critical for the correctness of ASR interpretation. In
other words, the component removal may change the tran-
scription results of ASR systems by altering spectrum distribu-
tion [24]. Meanwhile, since these components are non-essential
for human comprehension, humans can still understand the
audio even with the component removal. It becomes a new
challenge to the social media platforms, which usually pre-
screen and filter out harmful content such as misinformation
and violence with their content moderation systems. With the
voice spectrum reduction attacks, malicious influencers can
post and spread the videos or audios containing restricted
speeches to online users without triggering any content alerts.
This is because the sensitive content within the audio tracks
cannot be noticed or detected by machine-based detection sys-
tems; meanwhile, the harmful information can be perceived by
humans and thus have a negative influence on public audiences.
Moreover, the spectrum reduction attack can be easily launched
without using any specific devices (e.g., ultrasonic generator or
laser emitter) or any deep learning knowledge, so it is generic
and practical to any ASR systems. For example, researchers
have shown this attack is effective on Google Speech-to-
Text APIs, Facebook Wit, Deep Speech, GMU Sphinx, and
Microsoft Azure Speech APIs [3].

In this paper, we present an acoustic compensation system
named ACE to counter the spectrum reduction attacks. The
basic idea is to recover the removed frequency components
according to the remaining spectrum and to enhance the



audio robustness by introducing appropriate perturbations. Our
design is based on two observations: frequency component
dependencies and perturbation sensitivity. First, the Discrete
Fourier Transform (DFT) computation involved in the attacks
can introduce spectral leakage effect and sometimes aliasing
effect to the audio frequency spectrum, inevitably leading
to a high correlation among the frequency components with
similar frequencies. Due to the intrinsic dependencies between
neighboring frequency components, it is possible to recover
more of the original audio by compensating for the removed
components according to the remaining ones. Second, the
spectrum reduction attack could be considered as an adver-
sarial attack, where the removed components are an inverse
of added adversarial noise. Due to the perturbation sensitivity
of adversarial noise, the attack success rate would decrease
when the audio is played in an over-the-air scenario [40]. Thus,
to mitigate the spectrum reduction attacks, we introduce the
over-the-air perturbations into attacked audio by modeling the
acoustic propagation process (e.g., the ambient noise).

The ACE system contains three main modules, including
two core functional modules (i.e., spectrum compensation
module, noise addition module) connected in sequential order
for audio signal conversion and an auxiliary module (i.e., adap-
tation module) for attack detection and parameter estimation.

Spectrum Compensation Module. The spectrum compensa-
tion module estimates the original audio spectrum by aggre-
gating the scaled shifted attacked spectrum. The compensation
operation is mathematically equivalent to the linear convolu-
tion of the remaining frequency spectrum and a set of scaling
coefficients. Therefore, we can obtain the filter parameters of
the spectrum compensation module by linear regression.

Noise Addition Module. The noise addition module emulates
the Gaussian white noise during the audio propagation, which
is equivalent to adding equal intensity to all frequency compo-
nents. Since the magnitudes of removed components are under
a threshold, the added noise with limited magnitude can be
seen as an approximate alternative to the missing components.
Meanwhile, since the noise is too weak to affect the remaining
strong components, it can help recover the original spectrum
distribution without changing the human comprehension.

Adaptation Module. To achieve the highest ASR inference
accuracy under any given situation, the adaptation module
is responsible for estimating the component removal ratio
by calculating the proportion of extremely weak components
and configuring the optimal parameters for two core modules.
When the attackers are aware of our defense, they may launch
an adaptive attack that changes component removal ratios to
circumvent our defense. In this case, the adaptation module is
responsible for quickly detecting the attack parameter and up-
dating the module parameters for the current audio segments.

We implement a prototype of ACE and study its perfor-
mance by conducting extensive experiments over two popular
ASR systems (i.e., DeepSpeech [28] and CMU Sphinx [21])
and two public audio datasets TIMIT [22] and VCTK [52]. We
first reproduce the spectrum reduction attacks in two settings:
phoneme-level attacks and word-level attacks. To evaluate the
mitigation performance of ACE, we measure the ASR infer-
ence differences between the attacked audio and our mitigated
audio by using the word error rate (WER) and the character
error rate (CER), which reflect the minimum word-level and

character-level edit distance towards the real transcriptions [8].
Under the spectrum reduction attacks with a relatively high
component removal ratio (e.g., 85%), the ACE can reduce the
average WER from 0.90 to 0.57 and reduce the average CER
from 0.71 to 0.42. Considering even the benign audio retains an
inherent WER of 0.49 and a CER of 0.38, ACE can effectively
eliminate up to 79.5% WER and up to 87.9% CER among
the mitigable errors (i.e., the added errors actually caused by
attacks). We also evaluate the individual performance of each
module and analyze the parameter selection under different
scenarios to achieve the optimal performance. In addition, even
against the most aggressive adaptive attacks that update the
parameters every 80 ms (i.e., the phoneme duration), ACE
can still mitigate the recognition errors by 82.3% using the
adaptation module. The experimental results show ACE can
efficiently reduce the ASR inference errors caused by spectrum
reduction attacks, thus improving the ASR robustness.

To further analyze the root cause of ASR inference errors
and better understand why the ACE can mitigate these errors,
we perform an error analysis by looking into the audio
examples that result in the wrong transcriptions. We find that
ASR inference errors can be grouped into six categories,
namely, elision errors, rare word errors, consonant errors,
vowel errors, shifted phoneme errors, and natural language
processing (NLP) inference errors. For benign audio, the ASR
inference errors are mainly attributed to the rare words (40.3%)
and elision (20.9%), which rely on the corpus and language
model selection. However, under spectrum reduction attacks,
the inference errors mainly occur in phonetic misinterpretation.
For instance, 73.7% samples contain consonant errors, 68.4%
samples contain vowel errors, and 47.4% samples contain
shifted phoneme errors. By applying our ACE system, the
vowel errors have been largely diminished, only remaining in
22.7% samples. Due to the higher loudness and signal strength,
vowels carry richer information for restoring the phonetic
spectrum distribution. However, we also find the remaining
errors are concentrated in consonants (63.6%) since the weaker
strength and shorter duration make them more likely to be
confused. Therefore, we conclude that the spectrum reduction
attacks affect the ASR inference results mainly via phonetic
errors and the ACE system can largely mitigate the inference
errors by correcting the vowels.

In summary, our paper makes the following contributions:

e  We propose an acoustic compensation system called
ACE, which mitigates the spectrum reduction attacks
by performing frequency spectrum compensation and
introducing additional acoustic perturbations.

e We implement a prototype of the ACE system with
spectrum compensation, noise addition, and adaptation
modules to process the incoming audio according to
the estimated attack settings.

e  We conduct extensive experiments to show that ACE
can adaptively reduce the ASR inference errors caused
by spectrum reduction attacks with different attack
granularity.

e By performing a residual error analysis on real sam-
ples, we summarize 6 types of ASR inference errors
and analyze their root causes along with potential error
mitigation methods.



II. PRELIMINARIES
A. Automatic Speech Recognition

Automatic speech recognition (ASR) provides the audio-to-
text conversion with four steps, namely, audio capture, signal
pre-processing, feature extraction, and model inference [1].
First, a microphone captures audio signals by converting air
vibrations into electronic signals, which are then transformed
into a digital audio format via an analogy to digital converter.
Second, the digital audio signals are preprocessed by denoising
algorithms and a low-pass filter with a typical cut-off frequency
of 8 kHz. Signal preprocessing phase is critical for improving
ASR recognition accuracy. Third, the processed audio is split
into overlapping frames, which are used to extract the audio
features. The most common feature is the Mel Frequency
Cepstral Coefficient (MFCC) [76]. To obtain MFCC, Discrete
Fourier Transform (DFT) [74] is used to first get the audio
spectrum, where the frequencies are converted into the Mel
scale and the magnitudes are converted into the logarithm
scale. Then, MFCC can be calculated by taking the Discrete
Cosine Transform (DCT) of the list of Mel filter bank energies.
Finally, the audio features are fed into a deep learning model
to get the inference results, i.e., the content of the input speech.

B. Audio Signal Processing

Typically, audio signals can be analyzed from two different
perspectives, i.e., time domain and frequency domain. In the
time domain, an audio signal is represented as s(t), which
records the relative signal intensity at each instant. The same
signal would also be represented in the frequency domain, i.e.,
S(f), which reflects multiple sinusoidal components at each
frequency. Fourier transform is the bridge to achieve the time-
frequency domain conversion. Since modern devices process
the audio signals in digital format, the N-point Discrete
Fourier Transform (DFT) is utilized to convert the time-domain
signal s(n) into a frequency-domain signal [74].

N-1

S(k) = Z s(n) - [cos(%kn) —- sm(%kn)], (1)

n=0

where S(k) is a sinusoidal frequency component with the
frequency of fs - k/N (fs is the sampling rate). The absolute
value |S(k)| indicates the magnitude of the component and the
argument arg[S (k)] indicates the phase of the component. All
the frequency components {S(k),k € [0, N — 1]} compose
the entire signal spectrum. To convert the frequency-domain
signal back to time domain, we can use inverse DFT (IDFT).

C. Spectrum Reduction Attack

Voice spectrum reduction attack is based on the hypothesis
that ASR systems rely on some frequency components that are
non-essential for human comprehension [3]. Thus, even if these
components are removed, human listeners can still recognize
the modified audio; however, ASR systems may misinterpret
the audio and output wrong transcriptions. To launch spectrum
reduction attack, the weak frequency components under a
specific threshold are removed from the original audio signals.

Figure 1 shows the workflow to generate malicious audio
via the spectrum reduction attack. First, given a benign audio,
attackers first segment the audio signal and utilize DFT to
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Fig. 1: Workflow of Spectrum Reduction Attack.

decompose each audio segment into multiple frequency com-
ponents. Second, the attackers remove the frequency compo-
nents whose magnitudes are lower than a threshold. Third, the
remaining frequency components are reconstructed back to a
time-domain audio by IDFT. Fourth, the ASR system provides
the transcription for the modified audio. Fifth, the transcription
differences between the inference and the ground truth are
measured to update the threshold, e.g., enlarging the threshold
for too small differences. The threshold is determined until
the differences no longer change and humans cannot notice
the perception differences. Here, the proportion of removed
frequency components is called component removal ratio,
which is the only parameter in the spectrum reduction attack.
According to the granularity of signal segments, the attacks
can be launched at word level or phoneme level, where the
word-level attacks perform spectrum reduction on each word
and the phoneme-level attacks take phonemes as basic units.

III. THREAT MODEL

Attackers can leverage either phoneme-level or word-level
spectrum reduction attacks to convert benign audio into ad-
versarial audio using a specific component removal ratio (Ry).
We assume attackers can access the original audio and edit
the audio via digital signal processing (e.g., DFT) at either
software or hardware level. Attackers know real speech content
and utilize a specific value of Ry to remove the frequency
components of weak strength from the original audio spectrum,
misleading ASR systems for wrong inference results.

We assume the ACE system has permission to access and
transform the audio prior to the ASR APIs. It is unnecessary
for defenders to know the speech content or the component
removal ratio used by attackers. The defenders only know
the basic attack principle. The ACE implementation includes
training and testing phases. In the training phase, ACE can
access both the original and attacked spectrums to learn the
fitting parameters in each module. However, in the testing
phase, ACE only needs to access the attacked spectrum and
cannot access the original audio (i.e., ground truth). After the
processing of ACE, we assume the pipeline between ACE and
ASR is secure. We trust the ASR system and assume attackers
cannot modify acoustic/language models and vocabulary files.

If the attackers are aware of ACE defense system, they may
launch adaptive attacks that manage to use time-varying com-
ponent removal ratios to circumvent our defense and achieve
the original attacking goal, namely, generating audio that can
be perceived by humans but cannot be correctly interpreted
by machines. Besides, attackers may launch attack variants by
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Fig. 2: The overview of acoustic compensation system (ACE) against spectrum reduction attack.

attenuating weak component magnitude instead of removing
them or removing frequencies over specific frequency bands.

IV. SYSTEM DESIGN
A. Overview

We design an acoustic compensation system named ACE
to mitigate the effects of spectrum reduction attacks. The
design of ACE is derived from two observations. First, the
adjacent frequency components of natural sound have a high
correlation, which makes it possible to estimate the removed
components according to the remaining neighboring ones.
Thus, we utilize a frequency compensation strategy to recover
the original audio. Second, the spectrum reduction attack is
one type of adversarial attacks, which are sensitive to small
perturbations in both the frequency and time domains. When
adversarial audio is played in an over-the-air environment, the
attack success rate would decrease dramatically due to the
inevitable perturbations [6]. Hence, we emulate the over-the-
air perturbations into the malicious audio to mitigate the attack
effects by utilizing an acoustic propagation strategy.

Figure 2 shows the overview of ACE that contains three
main modules, namely, spectrum compensation module, noise
addition module, and adaptation module. The spectrum com-
pensation module is based on the frequency compensation
strategy that aims to reconstruct the removed weak components
using the remaining strong ones. In Figure 2, ACE estimates
the original audio by the filter parameter «, while the hyper-
parameters N and L are spectrum and segment lengths, re-
spectively. The noise addition module is based on the acoustic
propagation strategy to introduce the over-the-air perturbations
(i.e., noise with strength of ns) into input audio. The adaptation
module focuses on detecting the attack and estimating the real
spectrum removal ratio R, which is then used to determine
the optimal parameters of o and ns for spectrum compensation
and noise addition modules. The goal of the adaptation module
is to always achieve the highest ASR inference accuracy under
any attack parameter even if the attacker is aware of the
deployment and internal design of our defense system.

B. Spectrum Compensation Module

To defeat spectrum reduction attacks, an intuitive idea
is to recover the deleted components based on the existing
ones. In Figure 3, we design a spectrum compensation module
to restore the original audio frequency spectrum by shifting,
scaling, and aggregating the attacked frequency spectrum.

Hypothesis. Our hypothesis is the adjacent frequency com-
ponents have a high correlation, which is derived from two
side effects introduced by the DFT computation, namely, (i)
spectral leakage caused by signal truncation and (ii) aliasing
caused by signal under-sampling. The spectral leakage effect
introduces derived correlations to the neighboring frequency
components over the computed DFT spectrum. The aliasing ef-
fect, which only occurs in devices with low sampling rates, can
lead to the overlapping of frequency components. Due to these
effects, the neighboring components are no longer independent
and the amplitude changes along frequency components would
not be abrupt. Thus, the intrinsic dependency among frequency
components is the basis of spectrum compensation model.
Based on this hypothesis, we are able to estimate and restore
the removed frequency components using the remaining ones.

Modeling. Our method first shifts the attacked spectrum A(f)
by ¢ (—L < i < L) DFT units, where L is the maximum
shifting unit that indicates the window size of prediction. Then,
the shifted spectrum A(f — ) will be scaled with a scaling
factor «;. Finally, all the scaled shifted spectra are aggregated
as F'(f) to estimate the original spectrum F'(f).

E(fy= DY ai-A(f—1i),

—L<i<L

@

where a; (—n < i < n) are the parameters of the inverse filter
that converts attacked spectrum back to the original one.
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Fig. 3: The working flow of spectrum compensation module.
The attacked spectrum is first shifted and scaled, then all sub-
spectra are aggregated to estimate the original spectrum.

Parameter Fitting. In the training phase, we obtain the
scaling factors a; (—n < ¢ < n) by fitting the original
and attacked spectrums. For an original spectrum F'(f), we



can generate the attacked spectrum A(f) and then utilize
linear regression to obtain «. To obtain the filter parameter
a = la_p, a_ry1, ., ap_1, ar]’, we first construct
the Hanker matrix Hyy(2r+1) and a spectrum vector Fiyx1,
where H - o = F and N is the total spectrum length.
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Since the spectrum length N is larger than the filter size (2L +
1), « can be calculated as

a=(HT -H)'. HT . F 4)

After obtaining the filter parameter o, we only access the
attacked audio in the testing phase. We estimate the original
spectrum using F'(f) = A(f)*«, where * means convolution.

Adaptive Compensation. Since attackers may adopt different
attack settings (i.e., different component removal ratios), a
spectrum compensation module with a fixed set of parameters
might not always perform well under different scenarios. To
adapt to malicious audio with different settings, the spectrum
compensation module includes an adaptation mechanism. First,
we train multiple models using the original audio and the
attacked audio with different component removal ratios. Thus,
each model has the best performance against a specific com-
ponent removal ratio. After estimating the component removal
ratio, we use the model of the closest value to compensate for
the spectrum distortion caused by spectrum reduction attacks.

C. Noise Addition Module

The noise addition module emulates and introduces the
noise perturbations into audio signals to improve audio ro-
bustness, based on the fact that the over-the-air perturbations
can reduce the attack success rate of adversarial audio signals.

Hypothesis. The principle of the noise addition module is
based on the statistical properties of removed frequency com-
ponents. We can consider the removed components as an
added special adversarial noise, whose effect is to counteract
(remove) the weak components in the frequency domain. If
Sy denotes the frequency set of all removed components, the
equivalent adversarial noise can be represented as follows.

Nado(f) = — Z Imy - eI +en)|, 5)
fESf

where m and ¢ are the magnitude and phase of the removed
component of frequency f. We can find n,4, (f) has a similar
property with the Gaussian noise of a limited intensity since (1)
all magnitude my of ngq,(f) are under a small threshold and
(2) Gaussian noise has an equal magnitude at each frequency.
Therefore, if the noise intensity is set to the same threshold,
adding Gaussian noise can be seen as an approximate recovery
of removed weak components, as shown in Figure 4. However,
adding noise also increases the magnitude of remaining strong
components. Fortunately, the effect of noise addition on strong
components is limited since the added magnitude is not com-
parable to the original one. Hence, if we control the noise
magnitude carefully, the noise addition module can recover
part of the original inference results from the attacked audio.

Note that the removed weak components would not affect
human comprehension because they carry less information.

spectrum reduction add noise in

attack time domain

| | | |
F(f) A(f)
Original Spectrum Attacked Spectrum

1 || 1
R(f)

Processed Spectrum

Fig. 4: In the noise addition module, the added noise can fill
in the removed weak components while the distribution of the
processed spectrum can be similar to that of the original one.

Similarly, human listeners cannot notice the added noise with
a limited magnitude. The voice inference of ASR systems is
derived from statistical features of audio frequency spectrum.
For example, the most common acoustic feature MFCC is
calculated based on the energy statistics over 20 frequency
bands [24]. Thus, it is more effective to recover the spectrum
statistical features, instead of the spectrum details (i.e., each
individual frequency component). Because the spectrum reduc-
tion attacks change the spectrum distribution (i.e., statistical
features) by removing weak components [3], they can finally
reduce the inference accuracy. However, by adding magnitude-
limited noise to the attacked audio, we can fix the statistical
properties of the original spectrum. That is the root reason why
the noise addition module can boost the inference accuracy,
even though the added noise is different from the removed
energy in the spectrum details.

Modeling. To add the Gaussian noise n,;(t) to the attacked
audio a(t), we directly process the signals in the time domain.
Although frequency-domain processing is an alternative to
achieve the noise addition module, time-domain signal pro-
cessing is more efficient and does not need time-frequency
conversion. Hence, we can get the recovered signal r(t) as

r(t) = a(t) + nns (), ©)

where ns indicates the strength of the added noise, which
is typically the standard deviation of the noise’s magnitude
distribution. We model the Gaussian noise by utilizing a
random noise generator.

Adaptive Noise Addition. The selection of the noise param-
eter ns can affect the performance of noise addition module.
Strong noise (i.e., a large value of ns) can lead to the
information loss of original audio signals. Meanwhile, noise
that is too weak cannot compensate for the removed frequency
components or restore the original statistical properties of the
frequency spectrum. The optimal ns value only depends on
the component removal ratio of spectrum reduction attacks,
which means we need to utilize different noise strengths for
different component removal ratios. For a specific component
removal ratio, we test the inference accuracy of the attacked
audio by applying noise addition module with different noise
parameters. Thus, we can find the relationship between the
component removal ratio and the best noise parameter nSpest-
After the component removal ratio of an input speech is
estimated, the noise addition module can adaptively select the
best noise parameter to recover the original signal.

D. Adaptation Module

The ACE does not know the exact component removal ratio
used by attackers in advance, but all predefined parameters in
two core modules rely on component removal ratio to mitigate



malicious audio optimally. To solve this issue, we propose an
adaptive mitigation strategy by using the adaptation module.

The adaptation module can estimate the component re-
moval ratio of input signals by calculating the proportion of
extremely weak components. Specifically, in the ACE system,
we calculate the ratio of the components, whose magnitude is
less than 0.2% of the max magnitude (acquired from exper-
imental observations), among the whole spectrum. Then, the
adaptation module can further guide two core modules to set
the optimal parameters according to the estimated component
removal ratio. Therefore, with the adaptation module, we can
achieve optimal mitigation performance adaptively. Note that
the adaptation module can also distinguish if the input signals
are malicious. If the estimated component removal ratio is near
0, the input signal is determined as benign and no additional
operation is needed.

Attackers can only control the component removal ra-
tio when performing spectrum reduction attacks; meanwhile,
the adaptation module can estimate this parameter. Ideally,
the ACE system can always obtain the optimal mitigation un-
der a constant component removal ratio, even though attackers
know the defense mechanism. However, more armored attack-
ers may irregularly change the attack parameter, which differs
from the estimated one, to degrade the defense performance.
For example, attackers can use random component removal
ratios for different phonemes, words, or audio segments of
a specific length. The minimum unit to change parameter
depends on the minimal attack granularity (i.e., phoneme).

To defeat this adaptive attack method, the adaptation
module is required to frequently detect the attack parameter
and timely update the module parameters in ACE. Similarly,
the minimum interval to update module parameters (e.g., «)
depends on the minimal segment length in our processing (i.e.,
N). Obviously, shorter segments can improve the system’s
adaptability and sensitivity, allowing it to adjust more fre-
quently to the latest attack parameter set by attackers. However,
we find that shorter segments also decrease the compensation
performance (see Figure 6(a)) since the spectrum resolution
decreases with a decrease of segment length. Thus, it is a
trade-off to select a moderate segment length (i.e., update
interval) for both performance and adaptability. However, this
trade-off between adaptability and performance does not only
restrict defenders but also put attackers in a dilemma. Finer
attack granularity can help attackers switch the parameter more
frequently, but it also reduces the error rate of attacked audio
and impairs the attack effects (see Table II in Section V-E).

V. EVALUATIONS
A. Experiment Setup

Runtime Environments. The ACE system is implemented us-
ing Python 3.10. All the evaluation experiments are conducted
on a Linux (Ubuntu 20.04) server, equipped with an Intel Xeon
2620 CPU at 2.4 GHz and 16 GB RAM. The machine learning
algorithms used in ACE are implemented by the scikit-learn
0.23 library only with the CPU resources. We achieve the
functionality of speech recognition via the DeepSpeech 0.9.3,
PocketSphinx 5.0.0, and webrtcvad 2.0.10 libraries. Also, the
evaluation metric is implemented by the jiwer 2.3 library.

Speech Datasets. We select two benchmark datasets:
TIMIT [22] and VCTK [52]. TIMIT Acoustic-Phonetic Con-
tinuous Speech Corpus is a standard dataset for automatic
speech recognition [22]. The TIMIT corpus is collected from
630 female and male speakers with eight major American
English dialects. Because each speaker read ten phonetically
rich sentences, the dataset totally contains 6,300 audio sam-
ples, which consist of 4,620 training samples and 1,680 testing
samples. No speaker is allowed to appear in both the training
set and testing set. For each sample, the utterance is recorded
as a 16-bit audio file with a sampling rate of 16 kHz. The
dataset provides the ground-truth transcriptions of speech, as
well as the time-aligned phonetic and word transcriptions. Due
to the time alignment, it becomes convenient to achieve the
phoneme-level and word-level spectrum reduction attacks in
our experiments.

VCTK is a multi-accent corpus that includes the speech
data of 110 English speakers [52]. Each speaker reads about
400 sentences, which are stored at a sampling rate of 48 kHz.
Since VCTK does not provide annotation for phonemes and
words, we use 80 ms as average phoneme length and use 300
ms as average word length in the attack, based on our statistics
on phonemes/words. In the real world, the fixed attack length is
more practical since the attackers can save the enormous effort
of locating phonemes/words. The phonetic/word segmentation
can cost more time while does not have a unified standard [36].
We test the attack performance on TIMIT with the fixed
segmentation length and find that the error differences are less
than 4% compared with the exact segmentation.

ASR Models. We select two open-source automatic speech
recognition models DeepSpeech [28] and CMU Sphinx [21] in
the inference stage. The DeepSpeech model provides a speech-
to-text engine using the deep learning techniques proposed
by Baidu Research, supporting real-time inference on diverse
platforms (e.g., Windows, macOS, Linux, Android, iOS) and
embedded devices (e.g., Raspberry Pi). The acoustic model is
trained on American English datasets, with the augmentation
of noise synthesis. DeepSpeech can achieve a word error rate
of 7.06% on the clean test set of LibriSpeech ASR corpus [53].
The ASR model is imported via DeepSpeech library and runs
only in a CPU environment, though DeepSpeech also supports
GPU for a quicker inference. To detect voice activities in a
piece of audio data, the webrtcvad library is used to find voiced
segments and filter out unvoiced ones. We also study the ACE
performance via another ASR model CMU Sphinx. Since the
results are similar to those obtained via DeepSpeech, we list
the detailed results in Appendix B. Note that the adversarial
audios are generated for spectrum reduction attacks with
different component removal ratios and the defense models
are the same for attacks against two ASR models.

Spectrum Reduction Attack Settings. We reproduce the
spectrum reduction attacks according to the workflow in
Figure 1. For each audio sample in the datasets, we split
the signal into several audio segments. Because the TIMIT
dataset already marks the start and end sampling points of the
phonetic and word transcriptions, we can precisely split the
audio signals in phoneme/word-level granularity. We remove
weak frequency components from each audio segment with
a specific component removal ratio. For each audio segment,
the DFT and IDFT operations are performed in the extended



signal with a min length of the power of 2. Finally, we fill
the processed audio segments into the original positions of
the audio signal. According to the processing granularity, we
reproduce both phoneme-level and word-level attacks. Also,
as a more practical attack, we extend the spectrum reduction
attack by setting a fixed segment length (80 ms or 300 ms).
Compared with the original attack, audio is split into segments
of equal length that are processed individually and filled into
the original positions.

Training Procedure. In the compensation module of ACE, the
scaling coefficients need to be learned by linear regression.
We use the close-form solution in Equation 4 to calculate
the scaling coefficients over the shifted units. Considering all
the samples in the dataset, the number of rows in matrix H
would be the total number of sampling points over all samples.
However, the high dimensionality of H will lead to the curse of
dimensionality in the coefficient calculation, since Equation 4
involves the computation of (H” - H)~!. Hence, to reduce
the computing time and consumed resources, we divide all
samples into multiple batches, where each batch contains 200
samples. We first calculate the scaling coefficients for each
batch, i.e., apatcr, and then obtain the final coefficients o by
calculating the mean vector of all the coefficients over batches,
i.e., &« = mean(pqtcn ). The selection of batch size is a trade-
off between precision and speed. A larger batch size ensures
the final coefficients are much closer to the real ones, while a
smaller batch size can accelerate the model fitting speed.

Evaluation Metrics. We evaluate the performance of ASR
inference transcriptions using word error rate (WER) and
character error rate (CER), which are the common perfor-
mance metrics for speech recognition and machine translation
tasks [8]. Given the ground truth and inference transcriptions,
WER is the proportion of changed words (i.e., substitutions,
deletions, and insertions) to the total words in the reference.
WER measures the minimum edit distance between two tran-
scriptions if we try to modify one towards another; thus, WER
can also be used to indicate the similarity between two strings.
Here, the minimum edit distance is also called Levenshtein
distance, which is implemented by the Python module Leven-
shtein. CER measures the similarity between two transcriptions
in a finer character-level granularity since the attack is able to
only change a few phonemes. WER cannot distinguish if the
errors are caused by the whole words or part of phonemes;
however, CER can reveal more phonetic information about the
errors. For example, if the ground truth is ‘word’ and we have
two different transcriptions ‘wood’ and ‘mode’, the WERs
will be the same since WER(‘word’, ‘wood’) = WER(‘word’,
‘mode’) = 1. However, CER can indicate the transcription
‘wood’ can be better since CER(‘word’, ‘wood’) = (.25 while
CER(‘word’, ‘mode’) = 0.75.

To illustrate the error mitigation performance more directly,
we define a new metric to indicate the change of WER
(or CER) after the defense. For ASR systems, even benign
audio has inherent word recognition error, which is denoted as
WERy. The word error rates of attacked audio and processed
audio are denoted as WER, and WER,,, respectively. There-
fore, (WER, — WER) is the error caused by attacks, while
(WER, — WER,,) is the error mitigated by our defense. We
define the WER reduction ratio as (WER, —WER,,)/(WER, —
WERy) to measure what proportion of errors caused by attacks

are eliminated. Similarly, we define the CER reduction rate to
indicate how many character errors have been mitigated from
the original attack.

B. ACE Evaluation

We conduct experiments to evaluate the effectiveness of
ACE in defeating the spectrum reduction attacks. Since the
ACE contains two modules (i.e., spectrum compensation and
noise addition modules), we present the performance of each
module in Sections V-C and V-D to illustrate the contribution
of each module, respectively.

Performance of ACE. In Table I, the phoneme-level spectrum
reduction attacks on TIMIT cause a WER of 0.597 and a
CER of 0.386 in the ASR inference results. However, with the
mitigation of ACE, the WER and CER decrease to 0.314 and
0.187, respectively. The corresponding WER (CER) reduction
ratio is 74.5% (71.3%) of the errors caused by attacks. Note
that CER is usually less than WER since CER only counts
the characters that are inferred incorrectly, while WER counts
the whole word even if only one character is incorrect. For
the word-level spectrum reduction attacks, the average WER
and CER of attacked audio would be 0.794 and 0.562, respec-
tively. After utilizing ACE, the WER (CER) reduces to 0.568
(0.370) and its corresponding reduction ratio is 39.2% (42.2%).
Compared to the word-level attacks, the phoneme-level attacks
cause a smaller error rate since taking phonemes as the basic
units can better preserve the phoneme boundaries and hence
lead to fewer shifted phoneme errors (refer to Section VI-A).
Also, the error reduction ratio against word-level attacks is
less than that against phoneme-level attacks. The reason is that
word-level attacks typically cause a larger error rate due to the
longer segment lengths, i.e., more points in DFT computation.

If being launched with a fixed segment length, phoneme-
level attacks cause a WER (CER) of 0.581 (0.376), and word-
level attacks cause a WER (CER) of 0.772 (0.541). With the
ACE, the WER (CER) reduces to 0.304 (0.181) for phoneme-
level attacks and reduces to 0.549 (0.358) for word-level
attacks. The results show the error differences are typically
less than 4% when using a fixed phoneme/word length.

Next, we conduct the same experiments on another dataset
VCTK. With the ACE system, the WER (CER) of phoneme-
level attacks reduces from 0.897 (0.705) to 0.571 (0.415)
while the WER (CER) of word-level attacks reduces from
0.885 (0.688) to 0.686 (0.506). The experiments show that
the errors of VCTK samples are typically more than those of
TIMIT samples, due to the different sources of the corpus.
However, the error reduction ratio still ranges from 50.0% to
87.9%. Again, the experimental results prove that the ACE has
mitigation effects against both the word-level and phoneme-
level attacks on different benchmark datasets. We also evaluate
the WER/CER for the compromised and mitigated audio using
another ASR model, i.e., CMU Sphinx. The trends of mitiga-
tion effects are consistent with those tested by DeepSpeech.
We show the results in Appendix B and Table IV.

Table I also shows that these two modules have different
mitigation effects on different data distributions, i.e., the spec-
trum compensation module performs better over the VCTK
dataset and the noise addition module performs better over



TABLE I: The performance of ACE and its each module against the word-level/phoneme-level spectrum reduction attacks
(component removal ratio is 0.85). We evaluate both the WER and CER for the attacked audio and the audio with defense.

Dataset Attack Evaluation Baseline Error w/ Error w/ Our Defense™
atase Granularity Metric’ Errorf Attack? Compensation | Noise Addition | ACE

phoneme- WER 0.217 0.597 0.336 (-68.7%) 0.322 (-72.4%) 0.314 (-74.5%)
TIMIT level CER 0.107 0.386 0.203 (-65.6%) 0.190 (-70.3%) 0.187 (-71.3%)
word- WER 0.217 0.794 0.593 (-34.8%) 0.570 (-38.8%) 0.568 (-39.2%)
level CER 0.107 0.562 0.396 (-36.5%) 0.372 (-41.8%) 0.370 (-42.2%)
phoneme- WER 0.487 0.897 0.576 (-78.3%) 0.641 (-62.4%) 0.571 (-79.5%)
VCTK level CER 0.375 0.705 0.419 (-86.7%) 0.465 (-72.7%) 0.415 (-87.9%)
word- WER 0.487 0.885 0.691 (-48.7%) 0.714 (-43.0%) 0.686 (-50.0%)
level CER 0.375 0.688 0.511 (-56.5%) 0.522 (-53.0%) 0.506 (-58.1%)

T WER: word error rate between labels and predictions; CER: character error rate between labels and predictions.
¥ Baseline Error indicates the average error rate when ASR infers original benign audio.

§ Error w/ Attack indicates the average error rate under spectrum reduction attack (including the baseline error).
* The percentage in parenthesis represents the reduction ratio to the errors caused by attacks.

the TIMIT dataset. Thus, we apply two modules to achieve a
better recovery effect.

Comparison with Baseline Error. Even without any attack,
the original benign audio can lead to wrong transcriptions due
to the fast speaking speed or rare words. Thus, we measure
the WER and CER for the benign audio and set the error
rates as the baseline error in our evaluation. The average WER
(CER) of the benign audio is 0.217 (0.107) on TIMIT and
0.487 (0.375) on VCTK, which implies that recognition errors
cannot be fully eliminated. Therefore, it is more meaningful to
evaluate the error reduction capability of ACE over the errors
caused by spectrum reduction attacks. On VCTK, the ACE
can reduce the CER from 0.705 to 0.415 (drop by 0.29), while
the max possible reduction is from 0.705 to 0.375 (drop by
0.33). Thus, only a 0.04 mitigable character error rate remains
in the mitigated audio. In other words, we already eliminate
87.9% errors among the mitigable errors. We analyze the error
types for benign audio, attacked audio, and mitigated audio (in
Section VI-B) and find the remaining errors in mitigated audio
mainly come from the consonant errors, which are hard to be
recovered due to the short duration and weak signal strength.

Affecting Factors of ACE. The WER (CER) reduction ratio
against the phoneme-level attacks is higher than that against
the word-level attacks, due to two main reasons. First, for the
phoneme-level attacks, the phonemes are processed indepen-
dently. Thus, part of the recovered phonemes may lead to the
correct ASR transcriptions since the NLP module can infer the
words based on some critical phonemes. Second, the phoneme-
level attacks preserve the phonetic boundaries, providing the
possibility for ACE to have a better restoration effect. Besides,
Table I also shows the combination of modules can have
better mitigation performance than any individual module.
Therefore, it is necessary to include both the frequency domain
compensation and time domain perturbations in the defense.
Because ACE contains two core modules, we need to opti-
mize a set of parameters for the module combination when
encountering a different component removal ratio. There are
4 parameters in the ACE to be adjusted, thus we use the grid

search [42] to get the optimized solution for different attack
settings. By analyzing the reasonable range of parameters, we
select a set of candidate values for each parameter. Given a
component removal ratio, we obtain the optimal parameters by
testing different parameter combinations. For example, when
the component removal ratio is 0.85, we set the segment length
N to 32,768, the filter size L to 45, the corresponding filter
parameter vector «, and the noise level ns to 4.

C. Spectrum Compensation Module Evaluation

We evaluate the performance of the spectrum compensation
module and analyze the impacts of module parameters.

Performance of Spectrum Compensation Module. Table I
shows the phoneme-level spectrum reduction attack achieves
a WER of 0.597 and a CER of 0.386 on the TIMIT inference
results. However, with the mitigation of the spectrum com-
pensation module, part of the removed frequency components
can be recovered, and the WER and CER reduce to 0.336 and
0.203, respectively. The WER (CER) reduction ratio is 68.7%
(65.6%) for phoneme-level attacks. For word-level attacks, the
WER decreases from 0.794 to 0.593 and the CER decreases
from 0.562 to 0.396. The WER (CER) reduction ratio is
34.8% (36.5%) for word-level attacks. To better understand the
spectrum compensation, we compare the mean square errors
(MSE) between the benign audio and the attacked/mitigated
ones. The MSE reduces from 0.030 (0.039) to 0.027 (0.036) for
phoneme-level (word-level) attacks. Indeed, the compensation
also adds energy to strong components and may increase
MSE (this part has less effect on the inference); however,
the compensation for the removed components can greatly
recover the missing energy hence reducing the MSE in total.
On the VCTK dataset, we obtain similar results, where the
error reduction ratio ranges from 48.7% to 86.7%. Thus, we
conclude the compensation module is effective to mitigate
both phoneme-level and word-level attacks. Moreover, the
mitigation against phoneme-level attacks is much better since
more than half of the inference errors can be fixed via spectrum
compensation.
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Fig. 5: Performance of spectrum compensation module against
phoneme-level and word-level attacks with different compo-
nent removal ratios.

Impact of Component Removal Ratio. We test the spectrum
compensation module against spectrum reduction attacks with
different component removal ratios. Figure 5 shows that the
inference error rate changes under different attacks. We find
similar trends of WERs and CERs over the component removal
ratios for both phoneme-level and word-level attacks. With
the increase of component removal ratio, both WER and
CER increase from 0% to 100%. This trend is intuitive since
more information is deleted with a higher component removal
ratio. Compared with the word-level attacks, the phoneme-
level attacks cause lower WER and CER. From the perspective
of the frequency domain, a phoneme-level signal is shorter
and the corresponding DFT spectrum has fewer units; thus
the component removal operations become rougher. Besides,
ASR can still have a chance to infer the phonemes correctly by
phonetic context information. Also, we find the WER (CER)
reduction ratio is higher when the component removal ratio is
between 0.5 to 0.9. Too low component removal ratio leads
to few total errors; while too high component removal ratio
hinders the compensation due to the little residual information.
However, the spectrum compensation model can always reduce
the error rate even if the component removal ratio may vary.

Impact of Segment Length. To evaluate the impact of module
parameters, we first conduct the controlled-variable experi-
ments on the segment length (/V) of audio signals. To facilitate
the DFT computation, the length of signal segment is usually
in the form of a power of two. Thus, we test the performance of
spectrum compensation module with a segment length range
from 210 to 2'® sampling points. Considering the sampling
rate (f5) of audio signals is 16 kHz, the audio segment ranges
from 64 ms to 16 sec. Given a fixed component removal ratio
of 0.85, Figure 6(a) shows the error reduction ratio on both
phoneme-level and word-level attacks with different segment
lengths. We can find the error reduction ratio increases as the
N increases, which means a larger N can provide a better
compensation performance. The performance becomes stable
when N > 2'5, Because too large N can also increase the
computation complexity of DFT, we select 2'° (i.e., 2s) as
the optimal parameter for the compensation module. Note
that when N is too small, the compensation module may
also hurt the inference results. If N < 211 the signals need
to be concatenated frequently and the sampling points near
segment boundaries cannot be well learned. Also, short signal
segments may split too many long phonemes, hence increasing
the phonetic ASR inference errors. Hence, 2'° is a trade-off
between computation complexity and module performance.
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Fig. 6: Performance of spectrum compensation module against
phoneme/word-level attacks over different segment lengths and
filter sizes (component removal ratio is 0.85).

Impact of Filter Size. We also conduct controlled-variable
experiments on the filter size (L) of the spectrum compensation
module. We set the filter size range from 5 to 100 with a step
of 5 and use the compensation module to mitigate the spectrum
reduction attacks. Figure 6(b) shows the WER (CER) reduction
ratio using different filter sizes, under both the phoneme-level
and word-level attacks with a fixed component removal ratio
of 0.85. From the experimental results, we can find the critical
information to infer the removed components are concentrated
on the neighboring components. Therefore, the spectrum com-
pensation module still performs well even with a filter size
of 5. When L < 45, the mitigation performance increases
moderately as the L increases since more useful neighboring
information is involved. However, when L > 45, the mitigation
performance decreases slightly as the L increases since the
involved irrelevant noise has negatively affected the model
fitting. Also, too large L value will increase the dimensionality
of H in Equation 4, hence increasing memory consumption.
Thus, based on all factors, we set the optimal filter size as 45.

D. Noise Addition Module Evaluation

Performance of Noise Addition Module. Table I shows the
noise addition module can reduce the WER (CER) to 0.322
(0.190) against the phoneme-level attacks on TIMIT. The WER
(CER) reduction ratio is 72.4% (70.3%) for the phoneme-level
attacks. For the word-level attacks, the WER (CER) decreases
to 0.570 (0.372) and the corresponding reduction ratio is 38.8%
(41.8%). On the VCTK dataset, the experiments show similar
results, where the error reduction ratio ranges from 43.0% to
72.7%. We find the noise addition module is highly efficient
to defeat both the phoneme-level and word-level attacks and
half of the introduced inference errors are alleviated via adding
adaptive noise. The experimental results also reflect that the
removed components during the spectrum reduction attacks
have a similar statistical property to the Gaussian noise.

Impact of Component Removal Ratio. We test the noise
addition module against the attacks with different component
removal ratios. Figure 7(a) shows the WERs (CERs) of the
attacked audio with and without the noise addition module,
under the phoneme-level attack. The noise level in the module
(i.e., the noise standard deviation) is adapted to the component
removal ratio. Our results show a larger component removal
ratio requires a larger noise parameter since more energy is
needed to recover the spectrum distribution. If we use a fixed
noise level, the added noise can recover part of the removed
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Fig. 7: The performance of noise addition module against the
spectrum reduction attacks with different component removal
ratios and noise levels.

components and reduce both the WER and CER of attacked
audio, only if the component removal ratio is greater than
a specific value. However, if the component removal ratio
is less than this threshold, the added noise can negatively
affect the audio and even increase the WER and CER since
the added energy is greater than the removed one. Thus, the
adaptation module adopts a smaller noise level for a smaller
component removal ratio. We also find Gaussian noise is an
appropriate perturbation to reduce the success rate of phoneme-
level attacks. The results also hold for word-level attacks.

Impact of Noise Level. To analyze the impact of different
noise levels, we conduct the experiments by performing the
attacks with a fixed component removal ratio of 0.85. In
Figure 7(b), we can find the WER (CER) reduction ratio first
increases and then decreases, with the increase of noise level.
Weak noise is not enough to compensate for the defect in the
spectrum distribution, hence having a limited effect on error
reduction. However, too much noise will introduce excessive
signal interference and overwhelm the original spectrum dis-
tribution; thus the effect of error reduction will be gradually
eroded with a higher noise level. Therefore, for a specific
component removal ratio, we need to find the optimal noise
level, which can lead to the best error reduction effect.

E. Adaptation Module Evaluation

To evaluate the effectiveness of the adaptation module, we
test the error mitigation performance of ACE under a dynamic
attack environment, where attackers periodically change the
attack parameter. We find the ACE performance is stable when
N = 25 under different spectrum removal ratios. Therefore,
we use a fixed N value of 2'° (~2s), which is the min update
interval of module parameters. For the attack settings, we set
the min attack granularity as 80 ms, i.e., the average phoneme
duration. The max attack granularity is set to 2N (~4s). Our
update interval (N) can handle the attack granularity larger
than 2N since our update frequency will be more than twice
of attackers’. When launching the attacks, attackers randomly
change the spectrum removal ratio as a uniform distribution,
ie., R ~ U(0.01,0.95), according to the attack granularity.
When R = 0.01, only 1% components are removed; when
R > 0.95, the attacks will affect human comprehension.

We use TIMIT as the test dataset, which has an inherent
CER of 10.7%. Table II shows the CERs of attacked audio
and mitigated audio, under different attack unit lengths (gran-
ularity). With the increase of attack unit length, the CER of
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TABLE II: The performance of ACE system under a dynamic
attack environment with different attack granularities.

attack unit (ms) | 80 | 160 | 320 | 640 | 1280 | 2000 | 4000
CER w/ attack (%) 16.9 19.1 18.3 23.8 22.1 24.0 23.2
CER w/ ACE (%) 11.8 13.7 14.1 19.3 17.4 19.1 18.4
error reduction (%) | 82.3 | 643 | 553 | 344 | 412 | 368 | 384

attacked audio will increase until converging into a certain
value, which is consistent with the fact that word-level attacks
perform better than phoneme-level attacks. Therefore, we find
attackers also suffer from a trade-off, where a smaller attack
unit can increase the parameter changing frequency while
decreasing the attack performance. With a smaller attack unit,
the CER of mitigated audio tends towards the minimum limit
of CER (i.e., 10.7%), causing a relatively higher error reduc-
tion ratio. Also, the CER of mitigated audio converges when
the attack unit becomes larger, leading to a convergent error
reduction ratio. The experimental results show the adaptation
module can still perform well even if attackers use arbitrary
attack units and random component removal ratios.

F. Overhead

Since content moderation systems are often deployed at
scale to process a significant amount of content traffic, the
performance cost of ACE should be low for practical usage.
The ACE system only takes 40 ms to process 1-second
audio online. Meanwhile, since the audio is processed as a
data stream, this processing delay is imperceptible to human
listeners. Moreover, the peak RAM usage of ACE is 230 MB,
measured by the memory_profiler package [55]. Since the basic
operations in our algorithms are discrete Fourier transform,
matrix multiplication, and vector addition, the system can
be further accelerated and optimized via dedicated hardware,
parallel computing, and optimized C code.

VI. RESIDUAL ERROR ANALYSIS

Though ACE can successfully remove the majority of
errors introduced by the spectrum reduction attacks, some ASR
inference errors still remain in the transcriptions. To better
understand the remaining errors, we launch an error analysis.
We manually check the inference errors for 1,680 test samples,
each of which has the forms of benign, attacked, and mitigated
audio. We reproduce both the phoneme-level and word-level
spectrum reduction attacks with a specific component removal
ratio of 0.85. In total, we check 1,680 benign audio, 3,360
attacked audio, and 3,360 mitigated audio. We summarize six
types of errors from the ASR inference results and analyze
the cause of errors. In fact, these errors exist in general ASR
applications and are not limited to specific audio attacks.

A. Types of ASR Inference Errors

T1: Fast Speed (Elision) Errors. A common inference error
type is caused by fast speaking speed. Human speakers may
unconsciously omit one or more phonemes in a word or
phrase [75]. However, because most of the ASR training
samples are clear audio, the test audio with elision might not
fall into the regular inference distribution. Hence, even the



original audio without any attack might not be recognized by
ASR, e.g., the following transcription (T) misses the phrase
‘don’t ask me’ compared with the ground truth (G).

G: don’t ask me to carry an oily rag like that.
T: to carry an oily rag like that.

These errors usually occur in the sentence beginning due to
no prompt ahead for inference. Humans have the everyday
experience of using phrase elision and hence can recognize
fast-speaking sentences. The elision errors cannot be solved
by simply adding time-compressed audio to the training set
since the time compression can also increase the phoneme
frequencies; while the fast-speaking audio only shortens the
duration of phonemes but does not change their fundamental
frequencies. However, this error type can be further mitigated
by adding real spoken corpus into ASR training set [19].

T2: Rare Word Errors. If the involved words are rarely used
in daily life, there will be a high probability of recognition
error. In the ASR, rare words have lower prior probabilities,
hence resulting in low weights in the inference outputs. For
example, ‘iguanas’ and ‘alligators’ are two obscure species
names, which lead to errors in the transcription.

G: iguanas and alligators are tropical reptiles.

T: gquanta analogous are tropical reptiles.

This error type is due to the intrinsic inference mechanism of
ASR systems and can be mitigated by meta-learning [43] or
backoff strategy [54].

T3: Consonant Errors. The consonant confusion is usually
caused by different accents. It is easy to confuse [b] and [p], [t]
and [d], or [m] and [n] due to the short duration and similar
pronunciation. However, consonant errors are also common
errors in ASR systems. The following example shows the
misinterpreted consonants in transcription, especially for the
attacked audio. Also, ASR may not catch specific consonant
phonemes with unstressed pronunciation, e.g., the stop sounds
[t], [d], and [Kk] at the end of words.

G: the one meat showing
T: the one need showing

at
and

doses is pork.
does 1is poor.

T4: Vowel Errors. There are 15 vowels in American English.
Different from the consonants, vowels are made with the
mouth fairly open; thus vowels are louder and do not need
precise articulation like consonants. Hence, vowels are much
less likely to be misinterpreted. However, with the spectrum
reduction attacks, vowels can still be incorrectly recognized
since the spectrum has been changed. Vowels may confuse
each other due to different vowel blackness (e.g., the front
vowel [e] and the central vowel [a]) or vowel heights (e.g., the
close-mid vowel [o0] and the close vowel [u]).

G: will robin wear a
T: well robin where a

showed pleasure.
should pleasure.

T5: Shifted Phoneme Errors. The shifted phoneme error
means the phonemes in a word are broken up into two or
more words, e.g., the last few phonemes in a word are tied
to the next word. This error type is usually a derivative of
consonant and vowel errors. In this example, ASR does not
catch [f] in the word ‘fairy’, thus the [0] in ‘tooth’ has been
shifted to ‘-airy’ to form a new word ‘theory’.
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G: the tooth fairy forgot to
T: the two theories for that to

tooth fell out.
to sell out.

Sometimes, the shifted phonemes can be simple, e.g., ‘sum-
mertime’ is translated as ‘summer time’. In this case, the error
only affects the WER but has no changes to the CER.

T6: NLP Inference Errors. The natural language processing
(NLP) module in the ASR can infer words according to the
context information. Hence, with a predefined language model,
the NLP module can output an inference result that might not
be the same as the real sentence. In the following example, the
NLP module tends to keep the personal pronoun identical and
changes the word ‘your’ to ‘her’. This error is mainly caused
by the insufficient context information of the test sample.

G: she had your dark suit in greasy wash water.
T: she had her dark suit and greasy wash water.

The NLP inference errors are sometimes induced by other
inference errors. Other errors may change the critical words
in the sentences, hence changing the NLP inference results.

B. Error Composition Analysis

Based on the above six error types, we check the inference
errors in the test data. In Figure 8, we illustrate the proportion
of each error type over the samples of wrong transcriptions.
Because one transcription may have multiple error types, the
sum of all the proportion values can be larger than 100%.

Errors of Benign Audio. Indeed, even a benign audio without
any modification has some ASR inference errors. By utilizing
the DeepSpeech ASR API, we test the WER/CER for the audio
in the original dataset. The experimental results show that the
WER (CER) of the benign audio is 0.217 (0.107) on TIMIT,
which means 20% of the inferred words need to be corrected.
In Figure 8, we analyze the error types for the benign audio.
We find the errors mainly come from the rare word errors
(40%) and NLP inference errors (25%). However, these errors
are inherent due to the ASR training corpus and the NLP
language model; hence, the errors cannot be further eliminated
by post-processing. Moreover, these errors are general for ASR
systems and are not specific to any attacks. Due to the clear
pronunciation, the benign audio has a much lower error rate
of elision errors, compared to the attacked audio. Also, for



the benign audio, the phoneme errors (i.e., consonant errors,
vowel errors, and shifted phoneme errors) are relatively fewer.

Errors of Attacked Audio. The WER (CER) increases to
0.597 (0.386) for phoneme-level attacks and 0.794 (0.562) for
word-level attacks. In Figure 8, we find the error distribution
has also been largely changed. The two main error sources
are consonant errors (74%) and vowel errors (68%), then
the elision errors (53%) and shifted phoneme errors (47%).
Obviously, these phoneme errors have dominated the inference
results. The root cause is that spectrum reduction attacks have
changed the spectrum distributions of phonemes by removing
weak frequency components. Hence, based on the statistical
features (e.g. MFCC [24]), the ASR is apt to misinterpret the
attacked audio in the minimum sound units, i.e., phonemes.
Besides, the spectrum reduction attacks blur the boundaries
between phonemes; thus, there are more elision errors in the
transcriptions. The proportion of rare word errors decreases,
not because the attack can improve the rare word recognition,
but because ASR does not even provide the transcriptions for
these words thus we do not count for this error type. Above all,
adversarial audio mainly works by causing phoneme errors.

Errors of Mitigated Audio. After applying the ACE system,
we find the proportions of most error types have decreased.
However, compared with the benign audio, there is still a
gap in the error rate. The WER (CER) of mitigated audio
is 0.314 (0.187) for phoneme-level attacks and 0.568 (0.370)
for word-level attacks. Considering part errors come from the
inherent errors in the benign audio, the actual surplus of WER
(CER) is 0.097 (0.080) for phoneme-level attacks and 0.351
(0.263) for word-level attacks. Within the feasible extent of
error mitigation, the WER (CER) actually reduces by 74.5%
(71.3%) for phoneme-level attacks and 39.2% (42.2%) for
word-level attacks. Figure 8 shows most of the reduced errors
are in the vowel and elision error types. Vowel phonemes have
higher loudness and signal strength; thus, the attacked vowels
can be recovered more easily based on more information.
However, many consonant phonemes are light sounds and have
a shorter duration, so audio attacks are more likely to affect the
critical features that are hard to recover. That is why consonant
errors and shifted phoneme errors are still the major errors of
mitigated audio. ACE alleviates the elision errors by recovering
most of the vowel phonemes, and future mitigation should
focus on the recovery of consonant phonemes.

VII. DISCUSSIONS

A. Multipath Effect and Audio Quality Improvement

Multipath effect is a practical perturbation when the audio
propagates in an over-the-air environment. The arrival signal
is a combination of the signals coming from different paths
by reflection and scattering. By designing an echo module,
we analyze if multipath perturbations can mitigate spectrum
reduction attacks. The details of the echo module are listed in
Appendix A. However, the experimental results show the echo
module only provides a minor improvement in error reduc-
tion. Although both noise and multipath effects are acoustic
propagation effects, the latter does not introduce components
of new frequencies into the attacked audio to fill the removed
components. Hence, we exclude the echo module for ACE.
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In addition, the audio quality can be improved by denoising
(e.g., Wiener filter [18]), echo cancellation (i.e., inverse of our
echo module), or equalizer (i.e., volume adjustment for each
frequency [14]); however, since these methods cannot intro-
duce new frequency components into the compromised audio,
they are limited on mitigating spectrum reduction attacks.

B. Usability

ACE can be deployed on the devices and services contain-
ing automatic speech recognition function to perform content
moderation. When attackers use spectrum reduction attacks to
spread harmful information to public and escape the content
moderation systems, ACE can recover most of the affected
words/characters. ACE aims to reduce WER/CER to the base-
line level, even it is hard due to the irreversible informa-
tion loss; however, reducing the flipped words/characters can
still benefit content moderation systems by inferring harmful
content from a more accurate context. Moreover, ACE can
be extended to mitigate other audio attacks. For the audio
attacks that directly change signal spectrum, our spectrum
compensation module can be applied to recover the original
spectrum, while the only change would be the new coefficients
trained on new attacked audio. The noise addition module and
the echo module are used to model the acoustic propagation
process, which is effective against multiple adversarial attacks.

ACE can be either embedded into hardware (e.g., digital
signal processor) or implemented by software (e.g., the signal
preprocessing module in the ASR pipeline). Since the adapta-
tion module can estimate the attack parameters dynamically,
ACE does not affect the ASR function under no attack. Besides
the detection and prevention functions that can be provided by
a classifier, ACE can further provide recovery function, which
is critical to content moderation systems that need original
contents for further processing, e.g., timely reporting terrorism.

C. Countering Attack Variants

In Figure 1, spectrum reduction attacks are shown in the
basic form; however, attackers may launch attack variants by
changing either the attack frequency scope or the remaining
component magnitude. First, attackers may launch spectrum
reduction attacks only over specific frequency bands, instead
of the entire spectrum. The attack on the local spectrum leads
to a mismatch of the evaluated R value; however, its effect on
our defense is limited since the mismatch effect is similar to
the adaptive attacks that frequently change R values, while our
system is insensitive to the mismatch of R value estimation
(see Table II). Besides, we can detect and only compensate
for the affected frequency bands. This attack may also impair
attack effects since the changed local spectrum may not alter
the total distribution and affect the final inference results.

Second, attackers may try to attenuate the energy to a low
level (e.g., 50%) instead of to zeros. This attack leads to a
smaller estimated R value in our defense hence reducing the
compensated energy. However, we do not need to compensate
for all energy loss since there is still part of the energy
retained in the components. In Appendix C, we conduct the
experiments with the new attack settings that retain 25%, 50%,
and 75% energy, respectively. The experiments show the CER
reduction rate is 57.0% on VCTK for word-level attacks with



50% retained energy, compared to 58.1% in normal settings.
Therefore, our defense is robust against this attack variant.

D. Limitations

Our system cannot fully eliminate recognition errors
mainly due to two reasons. First, some inherent errors caused
by ASR and corpus selection even exist in benign audio
and cannot be fully eliminated by post-processing. Second,
spectrum reduction attacks decrease the amount of information
by removing weak components, so the irreversible increase of
information entropy hinders the recovery of original signals.

The ACE performance relies on parameter selection, com-
puting resources, and segment granularity. First, ACE contains
4 parameters (i.e., 3 in spectrum compensation module and 1 in
noise addition module), making it time-consuming to find the
optimal combination. However, since all parameters are related
to the component removal ratio, we can utilize stochastic
search to find the approximate optimal solution. Second, the
model fitting for the spectrum compensation module needs
high computing resources; however, the fitting only occurs in
the training phase. In the deployment phase, ACE can respond
fast by selecting the optimal pre-set model. Third, ACE per-
forms well in recovering phoneme-level spectrum reduction,
but yields nearly 50% effectiveness against word-level attacks
since the word-level attacks obfuscate the phoneme boundaries
and cause more shifted phoneme errors. In our future work,
we will try to improve the ASR accuracy by recovering the
phoneme boundaries of attacked audio.

The ACE is evaluated based on word/character recognition,
which is widely adopted by most content moderation systems
that use keyword filtering [31] and regular expressions [33].
However, some content moderation systems may utilize speech
understanding methods that consider the text semantics instead
of individual words [63]. We are unable to evaluate the ACE
performance with the speech understanding model due to
the lack of a dataset. Such an evaluation requires a labeled
dataset containing problematic content; however, existing pub-
lic datasets are built for either images or text [7], not for audio.

VIII. RELATED WORK

A. Attacks against ASR Systems

Attacks against Speaker-Dependent ASRs. The speaker-
dependent ASRs match the unique voice patterns for specific
humans [30] and are vulnerable to four types of attacks,
i.e., impersonation, replay, speech synthesis, and speech con-
version [77]. Attackers can launch impersonation attacks by
physically changing their voices [46] or launch replay attacks
with pre-recorded audio [45], [72], [35]. Attackers can also
synthesize the victims’ voices by merging acoustic patterns
and desired content [25], [39], [73]. Moreover, attackers can
convert anyone’s audio into the victims’ styles including
timbre [48], [65] and prosody [87], [60].

Attacks against Speaker-Independent ASRs. The speaker-
independent ASRs are more vulnerable because they accept
voice signals from anyone [4]. Attackers can use different
physical devices to attack the audio capture phase. Dolphin
attacks modulate audio into ultrasonic band to exploit the
vulnerability of microphone non-linearity [81]. Attackers can
also modulate malicious audio into laser light without being
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noticed by humans [62]. To leverage the pre-processing filter
of ASRs, attackers disguise malicious audio by adding crafted
high-frequency noise [1]. Moreover, attackers can utilize the
psychoacoustics hiding to generate malicious audio below the
thresholds of human perception [58].

Adversarial Attacks against ASR Inference. Attackers can
leverage adversarial machine learning to generate malicious
audio that can be interpreted by machines but cannot be
recognized by humans [86]. The adversarial audios can be
noise-like [16], song-like [80], or any format audio [71]. To
directly fool the NLP module after ASRs, skill squatting at-
tacks are proposed to mislead the system and launch malicious
applications [37], [84], [49], [85], [20]. The above attacks
either hide speaker identities or hide voice content from human
perception, whereas spectrum reduction attacks [3] tend to
mislead machines while keeping human perception.

B. Defenses against Malicious Audio Attacks

Defenses with Frequency and Time Domain Features. To
detect malicious audio, multiple frequency-based features are
commonly used, including Mel-Frequency Cepstral Coefficient
(MFCC) [78], Constant Q Cepstral Coefficients (CQCC) [66],
and Linear Prediction Cepstral Coefficient (LPCC) [51], [S].
Despite these cepstral coefficients, malicious audio are usually
different over frequency bands and can be detected using high-
frequency features [69], sub-bass frequency features [11], and
frequency modulation features [64]. Besides the frequency-
based features, DualGuard detects malicious audio with both
frequency-domain and time-domain features [69].

Defenses with Audio Properties. Malicious audio attacks
can be distinguished by physical properties of audio prop-
agation, e.g., time differences of arrival [70], [83], Doppler
effects [82], body-surface vibration [68], and microphone array
fingerprint [47], [41]. Moreover, the multi-modal method is
an alternative to ensure audio integrity [13]. Due to the
perturbation sensitivity of adversarial audio, denoising algo-
rithms, defensive perturbations, and audible transform are
applied to defeat malicious audio [26]. WaveGuard identifies
malicious audio by analyzing the transcription differences
between original and transformed audio [32]. The properties
of articulatory phonetics are effective to defeat the adversarial
audio deepfakes [12]. SkillDetective points out potential policy
violations to detect skill-related attacks [79].

IX. CONCLUSION

We propose an acoustic compensation system named ACE
to mitigate the effects caused by spectrum reduction attacks.
The ACE system contains three modules. The spectrum com-
pensation module estimates the removed frequency compo-
nents by using the remaining ones. The noise addition module
models the ambient noise in the acoustic propagation process
to add defensive perturbations to the malicious audio. The
adaptation module detects the properties of malicious audio
and sets the optimal parameters for each defense module. Ex-
perimental results show both the word error rate and the char-
acter error rate decreases significantly when using the ACE.
Among the ASR inference errors caused by spectrum reduction
attacks, up to 87.9% of errors can be eliminated via ACE. We
also conduct an error analysis on the residual ASR inference
errors to investigate the root causes and potential mitigation.
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APPENDIX A
ECcHO MODULE

When an audio is played in an over-the-air environment,
multiple signals from different paths can be received due to
the object reflection and audio scattering, i.e., the multipath
effect. Since the multipath effect is also an important effect in
the audio propagation process, we design an echo module to
introduce the multipath perturbations into the attacked audio.

Modeling. We denote the time-domain attacked signal as a(t)
and design a basic multipath model to emulate the received
signal e(t).

M
e(t)y=> B alt—i-T) )
=0

where M, (3, and T are the parameters of the echo module.
M denotes the total times of voice signal reflections; thus, the
whole echo signal e(t) contains M + 1 time-domain waves,
including the original voice and M reflected voices. 3° is the
attenuation factor of the i-th reflected signal and T is the
interval between two consecutive received signals. Therefore,
to emulate the multipath effect in the over-the-air propagation,
we first shift the original signal in the time domain by ¢ - T
ms, where 0 < ¢ < M. Then, we attenuate the strength of the
i-th shifted signal with an attenuation factor of 3°. Finally, we
sum up all the sub-signals to get the final echo signal e(t).
The multipath process is shown in Figure 9. In practice, the
echo caused by reflections cannot delay too long and human
listeners might not even notice that. Here, we assume the voice
is played in an indoor environment and set the longest delay
(i.e., M -T) to no larger than 15ms (Sm / 333m/s).



Fig. 9: The workflow of echo module. The original signal is
shifted and attenuated; then, the original signal and all the
reflected signals are accumulated as the final received signal.

TABLE III: The performance of the echo module on TIMIT
against phoneme-level/word-level spectrum reduction attacks.

Attack Evaluation Baseline Error Error
Type Metric Error w/ Attack w/ Echo
phoneme- WER 0.217 0.597 0.537 (-15.8%)
level CER 0.107 0.386 0.339 (-16.8%)
word- WER 0.217 0.794 0.760 (-5.90%)
level CER 0.107 0.562 0.529 (-7.30%)

Adaptive Echo. Similar to the spectrum compensation module
and noise addition module, the best parameters of the echo
module are also associated with the component removal ra-
tio. With the increase of the component removal ratio, the
attenuation coefficient 5 should become larger to provide more
perturbations. Also, the echo module will provide insufficient
perturbations if the number of paths (M) is too small; however,
the echo module can introduce too much interference if it
contains too many reflection paths. The shortest time delay
T is constrained by M so that M - T < 15 ms. To obtain the
adaptive parameters, we first reproduce the spectrum reduction
attacks with different component removal ratios. Then, we find
the best parameter combination of echo module for each attack
setting. We record the relationships between echo module
parameters and component removal ratio. After estimating the
component removal ratio of the input voice signal, we load the
corresponding best parameters into the echo module to provide
adaptive error mitigation against spectrum reduction attacks.

Performance of Echo Module. We conduct the experiments
on the echo module with the optimal parameters. In Table III,
the WER (CER) reduces to 0.537 (0.339) against the phoneme-
level attack. Considering the inherent error of 0.217 (0.107),
the WER (CER) reduction ratio is 15.8% (16.8%). For the
word-level attack, the WER (CER) reduces to 0.760 (0.529),
where the reduction ratio is 5.9% (7.3%) among the errors
caused by attacks. The experimental results show the multipath
perturbations have limited improvement effects on the ASR
inference results compared with spectrum compensation and
noise addition modules. The key reason is that the echo module
does not introduce components of new frequencies while the
other two modules can introduce new frequency components,
which target the weakness of spectrum reduction attacks.

Impact of Component Removal Ratio. We conduct experi-
ments on the echo module over different component removal
ratios. The mitigation performance against phoneme-level and
word-level attacks is shown in Figure 10, where the echo
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Fig. 10: The echo module performance against word-level and
phoneme-level attacks with various component removal ratios.

module parameters have adapted to component removal ratios.
The mitigation effect against phoneme-level attacks is better
than that against word-level attacks, indicating that phoneme-
level attacks are more sensitive to time-domain perturbations.
Also, the module parameters should change adaptively with
the component removal ratios. If we use a set of fixed module
parameters, the echo module can reduce the inference errors
only if the component removal ratio is larger than a specific
threshold. However, if the component removal ratio is smaller
than this threshold, the perturbations caused by the echo
module might bring negative effects. Therefore, in that case,
we need to rely on the adaptation module to adjust the echo
module parameters in order to weaken the perturbations, e.g.,
reduce the attenuation factor or decrease the reflection times.

Impact of Echo Module Parameters. Different from the
spectrum compensation and noise addition modules, the echo
module has three interrelated parameters, i.e., the echo interval
T, the reflection times M, and the attenuation factor 3. Hence,
it is not practical to use control variable methods due to the
high correlations between the module parameters. However,
we can set the range for parameters and seek the optimal
parameter combination. To achieve this goal, we define some
prior rules to narrow down the parameter range. First, the
longest distance of delay should not be longer than 5m, i.e.,
M-T < 16k-5/333 = 240. Then, we set the selection interval
for each parameter (5 for 7', 1 for M, 0.1 for 3). Finally, given
the attack with a specific component removal ratio, we find
the optimal parameter combination by the grid search [42].
For example, if the component removal ratio is 0.85, the best
parameters would be T'=5, M = 10, and 5 = 0.4.

APPENDIX B
ACE PERFORMANCE TESTED WITH CMU SPHINX

We test the ACE performance using another ASR model,
i.e., CMU Sphinx, which is a state-of-the-art efficient speech
recognition system designed specifically for low-resource plat-
forms. We evaluate the error rates (i.e., WER and CER) by
transcribing the audio signals by CMU Sphinx. Table IV shows
the experimental results with/without the ACE defense system.

Basically, the trends of mitigation effects are consistent
with those demonstrated in Table I that tests the performance
with DeepSpeech. When tested on the TIMIT dataset, the orig-
inal WER and CER is 0.410 and 0.223, respectively, without
any attack and defense. With the spectrum reduction attacks,
the WER (CER) increases to 0.927 (0.656) for phoneme-level
attacks and increases to 0.937 (0.655) for word-level attacks.



TABLE 1IV: The performance of ACE and its each module against the word-level/phoneme-level spectrum reduction attacks

(component removal ratio is 0.85). We evaluate both WER and CER according to the inference results of CMU Sphinx.

Dataset Attack Evaluation Baseline Error w/ Error w/ Our Defense™
atase Granularity Metric’ Errorf Attack? Compensation | Noise Addition | ACE

phoneme- WER 0.410 0.927 0.574 (-68.3%) 0.575 (-68.1%) 0.568 (-69.4%)
TIMIT level CER 0.223 0.656 0.391 (-61.2%) 0.387 (-62.1%) 0.382 (-63.3%)
word- WER 0.410 0.937 0.767 (-32.3%) 0.757 (-34.2%) 0.750 (-35.5%)
level CER 0.223 0.655 0.505 (-34.7%) 0.494 (-37.3%) 0.486 (-39.1%)
phoneme- WER 0.575 0.993 0.702 (-69.6%) 0.716 (-66.3%) 0.688 (-73.0%)
VCTK level CER 0.336 0.784 0.450 (-74.6%) 0.465 (-71.2%) 0.428 (-79.5%)
word- WER 0.575 0.969 0.819 (-38.1%) 0.823 (-37.1%) 0.802 (-42.4%)
level CER 0.336 0.734 0.558 (-44.2%) 0.565 (-42.5%) 0.545 (-47.5%)

T WER: word error rate between labels and predictions; CER: character error rate between labels and predictions.
¥ Baseline Error indicates the average error rate when ASR infers original benign audio.
§ Error w/ Attack indicates the average error rate under spectrum reduction attack (including the baseline error).
* The percentage in parenthesis represents the reduction ratio to the errors caused by attacks.

TABLE V: Performance comparison of ACE against spectrum reduction attack variants with different ratios of the retained
energy (tested on the VCTK dataset and evaluated using DeepSpeech).

Energy WER | CER

Retai
ctained " Attack | w/ACE | w/Attack |  w/ ACE
0% 0.885 | 0.686(-50.0%) | 0.688 | 0.506 (-58.1%)
25% 0.781 | 0.644 (-46.6%) | 0.582 | 0465 (-56.5%)
50% 0.662 | 0581 (-463%) | 0461 | 0412 (-57.0%)
75% 0.523 | 0503 (-44.4%) | 0397 | 0383 (-63.6%)
100%* | 0.487 | 0.375

T Retained 0% energy means using the regular spectrum reduction attacks.
* Retained 100% energy means no attack and the errors are baseline errors.

This means more than twice the errors occur when the CMU
Sphinx suffers from spectrum reduction attacks. However, with
the mitigation from the ACE system, the WER (CER) error
rate reduces by 69.4% (63.3%) against phoneme-level attacks
and 35.5% (39.1%) against word-level attacks. Similar to the
results in Table I, the mitigation effects of ACE is better than
any individual defense module, i.e., spectrum compensation
module or noise addition module. Also, the error reduction
ratio against phoneme-level attacks is better than that against
word-level attacks. All of these patterns are also applicable to
the test results on the VCTK dataset.

There are still some differences between the evaluation re-
sults using DeepSpeech and CMU Sphinx. First, with the CMU
Sphinx model, the baseline errors are basically more than
those tested by DeepSpeech. This is because the CMU Sphinx
is prone to misinterpreting audio due to its design for low-
resource platforms with a small vocabulary and lightweight
language model. Second, in Table IV, the WERs are over 0.9
when suffering from the spectrum reduction attacks, which
means the CMU Sphinx is more vulnerable to the audio attacks
compared with the DeepSpeech model. However, by utilizing
the ACE system, the WERs can even drop to as low as 0.568.

Overall, both evaluation tests prove the ACE system can
mitigate the effects caused by the spectrum reduction attacks.
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APPENDIX C
ACE PERFORMANCE AGAINST ATTACK VARIANTS

We conduct experiments to consider the situation where
attackers attenuate the energy of frequency components to
a low level instead of to zeros. In the experiments, word-
level attacks are conducted on the VCTK dataset and both the
attacked/mitigated audios are evaluated using the DeepSpeech
model. We select the most typical experimental settings, i.e.,
reduce the energy to 25%, 50%, and 75%, respectively.

From the experimental results in Table V, we can find two
conclusions. First, this attack method will naturally impair
the attack performance because only removing part of the
energy may not sufficiently change the statistical distribution
of audio spectrum. Therefore, in Table V, the error rates reduce
significantly when attackers retain more energy for the weak
components. Second, our defense can be still applied to this
attack variant. Though this attack causes a smaller estimated R
value hence reducing the actual compensated energy; however,
the compensated energy is enough because there is still part
of the energy retained, which can also be seen as a part of
compensation. For example, the CER reduction rate is 57.0%
for the word-level attack variant, compared to 58.1% for the
regular spectrum reduction attack.



