
SpecTaint: Speculative Taint Analysis for
Discovering Spectre Gadgets

Zhenxiao Qi
UC Riverside

zqi020@ucr.edu

Qian Feng
Baidu USA

fengqian@baidu.com

Yueqiang Cheng∗
NIO Security Research
yueqiang.cheng@nio.io

Mengjia Yan
MIT

mengjiay@mit.edu

Peng Li
ByteDance

peng.li@bytedance.com

Heng Yin
UC Riverside

heng@cs.ucr.edu

Tao Wei
Ant Group

lenx.wei@antgroup.com

Abstract—Software patching is a crucial mitigation approach
against Spectre-type attacks. It utilizes serialization instructions
to disable speculative execution of potential Spectre gadgets in a
program. Unfortunately, there are no effective solutions to detect
gadgets for Spectre-type attacks. In this paper, we propose a novel
Spectre gadget detection technique by enabling dynamic taint
analysis on speculative execution paths. To this end, we simulate
and explore speculative execution at system level (within a CPU
emulator). We have implemented a prototype called SpecTaint
to demonstrate the efficacy of our proposed approach. We eval-
uated SpecTaint on our Spectre Samples Dataset, and compared
SpecTaint with existing state-of-the-art Spectre gadget detection
approaches on real-world applications. Our experimental results
demonstrate that SpecTaint outperforms existing methods with
respect to detection precision and recall by large margins, and
it also detects new Spectre gadgets in real-world applications
such as Caffe and Brotli. Besides, SpecTaint significantly reduces
the performance overhead after patching the detected gadgets,
compared with other approaches.

I. INTRODUCTION

Spectre has now become an emerging attack vector [29]–
[31] that breaks down the isolation between processes. Spectre
attacks have prompted widespread security concerns, since
they can exploit critical vulnerabilities across the spectrum of
different processor architectures, including those from Intel,
AMD, and ARM. Any devices with these vulnerable proces-
sors could be leveraged to defeat the security protection in
operating systems (OSs) [29], browsers [21] and infrastruc-
tures [45] built on these devices.

Spectre mitigation at the hardware level is challenging.
To ensure the security of processors, SafeSpec [27] proposes
shadow hardware structures designed for speculative execution,
such that the microarchitectural state can also be discarded to
avoid leakage through side channels. InvisiSpec [46] provides
a speculative buffer that stores speculative loads. Thereby,

∗The main work was done when Yueqiang Cheng worked at Baidu Security.

speculative loads are invisible to the cache line state. While
these techniques can mitigate Spectre attacks by disabling
cache side channels, they are still at the design stage.

Software patching is another way to mitigate Spectre
attacks. Software vendors cannot always assume their services
are running on patched processors, especially for these services
running on third-party cloud platforms. Fortunately, software
patching provides vendors an opportunity to take control over
the security of their products. When there is no effective
remedy applied to the hardware, software vendors can utilize
serialization instructions [13] to patch Spectre gadgets in
software and protect their products.

However, it is nontrivial to find a Spectre gadget (a
sequence of instructions that leaks information via speculative
execution). It is impossible to blindly serialize all conditional
branching instructions in a program, which will introduce
a very high performance penalty. Many researchers propose
various solutions to strike a balance between security and per-
formance. Generally speaking, they try to find a set of potential
Spectre gadgets in a program and only patch these gadgets
to avoid high runtime overhead. Spectre V1 Scanner from
RedHat [5] and MSCV Spectre 1 pass [41] search in binary for
gadget patterns, and only patch gadgets that match predefined
patterns. Tools like SPECTECTOR [23] and oo7 [43] conduct
more advanced static analysis such as symbolic execution and
taint analysis to detect Spectre gadgets. They are more accurate
and generic than simple pattern matching. However, static anal-
ysis approaches are known to be imprecise, bringing high false
positives and sometimes false negatives when detecting Spectre
gadgets. Having realized the limitations in the static analysis,
SpecFuzz [39] takes a dynamic analysis approach. It extends
fuzzing to not only monitor the normal execution of a program
but also simulate its speculative execution paths. It simulates
speculative execution by inserting speculative execution logic
into the original program at compile time, and detects Spectre
gadgets when out-of-bound memory accesses are observed
during fuzzing. However, to ensure high fuzzing throughput
during simulation of speculative execution, its simulation logic
is oversimplified, causing both high false positives and false
negatives (see Section II-B for more detailed discussions).

In this paper, we would like to enable dynamic taint
analysis to discover Spectre gadgets. We propose to conduct

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24466
www.ndss-symposium.org

dynamic taint analysis on speculative execution paths and dis-
cover Spectre gadgets based on data flow patterns. Compared
with syntax-based [5] and sanitizer-based approaches [39], our
gadget pattern can capture the semantics of Spectre gadgets.
As substantiated in the evaluation (Section VI), our semantic-
based gadget pattern produces fewer false positives, compared
with the existing works. Furthermore, static taint analysis suf-
fers from the severe over-tainting and under-tainting issues due
to imprecise memory alias analysis, incomplete control flow
graph extraction, etc. As shown in our evaluation (Section VI),
oo7 has poor precision and recall rates when analyzing real-
world programs.

However, existing dynamic binary taint analysis platforms
cannot detect Spectre gadgets because speculative execution is
invisible to normal program execution. Therefore, we extend
a dynamic taint analysis platform and instrument speculative
execution logic on-the-fly. As a result, we can simulate spec-
ulative execution and capture data flow patterns on specula-
tive paths for Spectre gadget discovery. To the best of our
knowledge, we are the first to enable dynamic taint analysis
on speculative paths for Spectre gadget detection.

We have implemented a prototype SpecTaint to demon-
strate the efficacy of speculative taint analysis in detecting
Spectre gadgets. We evaluated the performance of SpecTaint
on our Spectre Samples Dataset and six real-world programs.
The experimental results demonstrate that SpecTaint out-
performs the baseline approaches in terms of the precision
and recall by large margins. It also has reasonable runtime
efficiency and reduces the performance overhead after patching
detected gadgets by 73%, compared with the conservative
hardening strategy. Besides, SpecTaint can detect new Spectre
gadgets in real-world applications like Brotli [7] and Caffe
framework [1].

We summarize our contributions as follows:

• We propose a dynamic speculative execution simulation
platform that enables dynamic taint analysis on specula-
tive execution paths. With the support of dynamic taint
analysis, we deploy a semantic-based gadget detector that
detects exploitable Spectre gadgets during the program
execution.

• We build a synthetic dataset by inserting known Spectre
gadgets into selected real-world programs. The dataset
can be considered as a benchmark to help researchers
evaluate their Spectre gadget detection tools. It will ben-
efit the security community.

• We implement a prototype SpecTaint to demonstrate
the efficacy of our approach and compare SpecTaint
with state-of-the-art tools on the Spectre Samples Dataset
and real-world programs. Our evaluation indicates that
SpecTaint outperforms existing methods with respect to
precision and recall with reasonable runtime efficiency.
Moreover, SpecTaint discovered new Spectre gadgets
that were not detected by the other tools. Besides, it sig-
nificantly reduces the execution overhead after patching
detected gadgets, compared with the other approaches.

II. OVERVIEW

In this section, we first walk through a motivating example
to explain how a Spectre V1 gadget is exploited by attackers.

Then we introduce the background and limitations of state-
of-the-art tools that discover Spectre gadgets from binaries.
Furthermore, we propose our approach and show the capabil-
ities of our approach to address these limitations. Then we
give a brief introduction about the overview and mechanism
of SpecTaint. At last, we discuss the scope and assumptions
of this work.

A. Motivating Example

Listing 1 shows a code snippet that can be exploited to
launch a Spectre V1 attack [34].

1 vo id v i c t i m f u n c t i o n (s i z e t u s e r i n p u t)
2 {
3 . . .
4 i f (u s e r i n p u t < g e t l e n (a r r a y 1)){
5 s e c r e t = a r r a y 1 [u s e r i n p u t] ; / / RS : Read S e c r e t
6 temp &= a r r a y 2 [s e c r e t ∗ 2 5 6] ; / / LS : Leak S e c r e t
7 }
8 }
9 i n t main ()

10 {
11 v i c t i m f u n c t i o n (u s e r i n p u t) ;
12 r e t u r n 0 ;
13 }

Listing 1: Code snippet containing Spectre gadgets.

In this example, the if statement is a sanity check that
ensures the following array access is within a valid range.
When evaluating the sanity check, the outcome of the branch
at line 4 may take many CPU cycles to be determined (e.g.,
due to the delay caused by a load from the main memory).
To avoid the performance penalty caused by this delay, the
branch prediction unit (BPU) will predict the branch outcome,
from where the instructions will be executed speculatively. An
attacker can poison the branch predictor by feeding crafted
inputs to the program to intentionally trick the BPU into
making an expected prediction on that branch. Then the
attacker can launch the Spectre attack by running the code with
an out-of-bounds value as input. In this case, the BPU predicts
the branch outcome to be true and the processor speculatively
executes instructions at line 5 and line 6. Consequently, an
arbitrary value can be read using an out-of-bounds index to
access array1 at line 5. Then another index related to the
loaded secret is used to access array2 and results in cache
line state changes for array2. After the processor finds out
the prediction to be wrong, it discards all architectural effects
made by speculative instructions. However, side effects (e.g.,
cache line state changes) still remain at the micro-architectural
level, and the attacker can launch a cache side-channel attack
(e.g., Flush+reload [48]) to retrieve the secret value.

B. Background and Rationale

Speculative execution is a hardware feature that is invisible
to the program execution. Therefore, to apply software-based
program analysis techniques on detecting Spectre gadgets, the
first step is to simulate speculative execution at the software
level, which is also the principle for all related works. To this
end, existing approaches utilize different methods to simulate
speculative execution, either statically or dynamically. RH
scanner [5] (also known as Spectre V1 scanner) is a static
analysis tool. It simulates speculative execution by scanning

2

both targets of a conditional branch. By doing so, it at least
covers one path that is not taken during real execution, which is
considered as a speculative path. During scanning, it searches
a certain pattern in the binary to detect Spectre gadgets.
However, the syntax-based code pattern used by RH scanner
could produce a large number of unexploitable candidates,
since not all detected gadgets can be controlled by attackers.

Oo7 [43] also conducts a static binary analysis. The differ-
ence lies in that it conducts a semantic-based gadget detection.
That is, it leverages the data flow analysis to construct a
semantic code pattern and identifies the code snippet that not
only satisfies predefined patterns but also can be controlled via
user inputs. The intuition behind it is that if the gadgets can
be influenced by user inputs, attackers can leverage carefully-
constructed inputs to exploit these gadgets. To this end, oo7
utilizes static taint analysis to trace information flow from
inputs. However, it is well-accepted that static taint analysis
suffers from severe over-tainting and under-tainting issues due
to imprecise memory alias analysis, inaccurate control flow
graphs and call graphs, etc.

The aforementioned works examine speculative execution
statically and deploy different program analysis techniques for
Spectre gadget detection. However, the detection capabilities
of these approaches inherit the limitations of static analysis
techniques. Therefore, these techniques by design suffer from
high false positives and false negatives.

SPECTECTOR [23] mathematically defines a semantic
notion of security against speculative execution and develops
an algorithm based on symbolic execution to prove the absence
of speculative leaks. However, this approach inherits the bottle-
necks of symbolic execution and has to sacrifice the soundness
and completeness of analysis when analyzing large programs.

SpecFuzz [39] takes a fuzzing approach to dynamically
detect Spectre gadgets. It exposes speculative execution to
fuzzing by inserting the speculative execution logic into the
program at compile time, and relies on random mutation of
program inputs to detect speculative execution errors during
program execution. To ensure high fuzzing throughput, its
gadget detection logic is oversimplified. More specifically, it
has the following limitations:

• Simplistic Gadget Modeling. To avoid high runtime
overhead during fuzzing, SpecFuzz simply leverages a
memory safety checker (e.g., AddressSanitizer) to detect
out-of-bounds memory accesses and considers all out-of-
bounds memory accesses to be potential Spectre gadgets.
This modeling is oversimplified and error-prone. An out-
of-bounds memory access during speculative execution
may not be controlled via user inputs and does not nec-
essarily constitute a Spectre V1 gadget. Our experiments
in Section VI substantiate this claim.

• Probabilistic Detection. SpecFuzz detects Spectre gad-
gets by capturing out-of-bounds memory access errors
during speculative execution. However, even if a true
Spectre gadget is indeed exercised during fuzzing, it may
or may not trigger any out-of-bounds memory access
errors. SpecFuzz relies on random mutation of program
inputs to trigger these errors. As a result, the Spectre
gadget detection of SpecFuzz is probabilistic.

• Flawed Exception Handling. Exceptions are likely to
occur during simulated speculative execution, because it
executes a path which might not be expected. To deal
with exceptions during speculative execution, again for
simplicity, SpecFuzz stops the simulation immediately
and restores the execution to a previously saved state. This
exception handling is flawed, because it does not correctly
simulate how the hardware actually behaves. In reality,
when encountering an exception during speculative execu-
tion, the processor can continue the speculative execution
until it is terminated [34]. Consequently, SpecFuzz might
miss Spectre gadgets that are located after the exception-
raising instruction, thereby causing false negatives.

In this work, we would also like to take a dynamic analysis
approach to detect Spectre gadgets, to ensure high detection
accuracy. We resort to independent test case generation sys-
tems (such as fuzzing and symbolic execution) to produce
high-quality test cases to achieve high detection coverage.
In order to achieve high detection accuracy in real-world
software, we need to strike a balance between scalability and
gadget detection fidelity. That is, our analysis must be able to
cope with complex real-world software, and faithful enough to
ensure high detection accuracy.

To this end, we propose to perform dynamic taint analysis
on speculative execution paths, and conduct taint-based pat-
tern checking to characterize Spectre gadgets at the semantic
level. Essentially, by performing dynamic taint analysis on
speculative execution paths, we can detect memory accesses
that are dependent on the program input (which attackers can
control) and may cause information leakage through cache
side channels. This taint-based gadget pattern checking might
not be as precise as SPECTECTOR [23], but our scheme is
designed to be scalable and practical for detecting Spectre
gadgets from real-world programs. It is more faithful than
the one used in SpecFuzz [39], as it is deterministic (once
the program inputs are determined) rather than probabilistic
(relying on random mutation of program inputs to trigger
errors). Our evaluation in Section VI shows that this taint-based
approach is able to achieve much better detection accuracy than
SpecFuzz, by paying more runtime overhead on speculative
taint analysis. In other words, our trade-off between scalability
and gadget detection fidelity is justified.

C. System Overview

Architecture. As illustrated in Fig. 1, we extend a system
emulator to simulate speculative execution and enable dynamic
taint analysis on top of it. Given a target program, we simulate
speculative execution of the CPU by dynamically forcing the
CPU emulator to execute code paths (speculative instructions)
which will not be executed at normal execution. We also
conduct tainting analysis on speculatively executed instructions
to detect Spectre gadgets.

Workflow. Fig. 2 illustrates the workflow of SpecTaint.
SpecTaint will go through two stages, the normal execution
stage and speculative execution stage. At the normal execution
stage, SpecTaint runs the target program with seeds generated
by external fuzzers to explore as many execution paths as
possible. SpecTaint will start to simulate speculative execution

3

Fig. 1: Architecture of SpecTaint.

Fig. 2: Workflow of SpecTaint.

when encountering a conditional branch and backup the cur-
rent execution state. When the speculative execution window
(SEW) is reached, SpecTaint will roll back the execution
state to the previously saved checkpoint. Like the rollback of
speculative execution in the hardware, our simulated rollback
also squashes all the side effects produced during speculative
execution. At the speculative execution stage, a Spectre gadget
detector conducts pattern checking on each speculative execu-
tion path to detect gadgets. To mitigate Spectre attacks, the
reported gadgets are forwarded to automatic serialization tools
(e.g., Speculative Load Hardening [18]).

Threat Model and Scope. We share the same threat model
with other Spectre gadget detection tools [39], [43]. That is,
our analyzed programs are benign but might be vulnerable.
We do not deal with malicious code that might deliberately
thwart or escape our analysis. Our approach can be used to
analyze the exploit code for Spectre gadgets in a malware
sample, but it is not our focus in this paper. In this work,
we focus on detecting gadgets in victim programs that can
be exploited by Spectre V1 attacks and leak sensitive data
through cache side channels. Meltdown-type attacks do not
require gadgets in victim programs and can be launched in
malicious programs. Therefore, they fall out of the scope of
this work. Our simulation focuses on Spectre V1 gadgets
detection at the binary level. We do not simulate micro-
operations, instruction execution including instruction fetching,
decoding, etc., and irrelevant hardware structures such as the
reorder buffer (ROB). We only use the size of ROB to calculate
the speculative execution window (SEW).

III. DYNAMIC SPECULATIVE EXECUTION SIMULATION

In this section, we introduce our speculative execution sim-
ulation platform for Spectre gadgets detection. Our platform
extends the binary analysis platform DECAF [19], which is
built on top of the system emulator QEMU [14]. Specifically,
we will showcase how we utilize the system emulator to sim-
ulate speculative execution triggered by branch mispredictions
and how we explore speculative paths in a depth-first manner.

A. Misprediction Simulation

Spectre V1 exploits out-of-bounds memory accesses in
speculative execution triggered by one or more mispredic-
tions of conditional branches. SpecTaint extends a system
emulator to simulate this behavior. In the system emulator,
pc stores the next instruction to be executed; in the case
of a conditional jump, it stores the jump target address. To
simulate the misprediction behavior of processors, SpecTaint
inverts the direction of the conditional jump by replacing
the pc with the untaken target address. As a result, it will
execute the untaken path first at a conditional branch and
enter the simulated speculative execution. Before it goes to
the untaken path, a state checkpoint is saved, which contains
the current state of the emulator, e.g., CPU registers. During
the simulated speculative execution, any modification to the
memory will be logged. Specifically, the original value will be
saved before a speculatively executed instruction modifies it.
When the speculative execution window is reached, the simu-
lated speculative execution will be terminated and the control
flow transfers back to the last saved checkpoint. To maintain
the correctness of execution, the memory modifications will
be restored by writing the original values back to memory
and the CPU state will be restored with the saved state. As
for other conditions to terminate speculative execution, we
consider serialization instructions (e.g. SYSCALL, LFENCE,
etc.) listed by Mambretti et al. [35] and terminate the simulated
speculative execution when encountering these instructions.

Exception Handling. Exceptions can be very common during
the simulation of speculative executions. This is because a
CPU will execute a path which is not expected to execute.
A straightforward way for simulation is to terminate the
simulation and roll back whenever an exception is triggered, as
done in SpecFuzz [39]. However, it could miss Spectre gadgets
after the exception point along the speculative path, since
speculative execution is not supposed to be terminated when
hardware exceptions are raised in many CPU models [34]. The
speculative execution is expected to continue even if an excep-
tion occurs. To guarantee a precise simulation, our approach
does not roll back when an exception occurs, and instead forces
it to silently simulate this exception instruction without raising
any exception and continue speculative execution on the next
instruction.

To simulate this behavior, we extend the exception handler
of the system emulator. More specifically, we use a customized
exception handler to capture errors in speculative execution.
When an exception due to the permission violation (e.g., ac-
cessing kernel space from user-land) occurs during a simulated
speculative execution, we will silently simulate this exception
instruction without raising any exception and continue the
user-land execution after the exception instruction. By doing

4

so, SpecTaint is able to continue the simulation even when
exceptions occur. For other exceptions which SpecTaint is
not able to handle (e.g., caused by invalid jump target or
incomplete address translation) because the emulator does not
know where the next instruction to be executed is, SpecTaint
will make a state rollback and restore to the previously saved
checkpoint.

B. Exploration of Speculative Execution Paths

The path exploration involves two path types, the normal
execution (NE) path, and speculative execution (SE) path. To
explore the NE paths, we feed seeds generated by fuzzing
tools into the target program. When encountering a conditional
branching instruction, SpecTaint redirects the execution to
the untaken branch first to explore SE paths. Crucially, CPUs
can perform nested speculative execution in a SE path. Since
we center on Spectre V1 which exploits the misprediction of
conditional branches, we take into account nested speculative
executions triggered by conditional branches. To simulate this
behavior, SpecTaint explores SE paths for each conditional
branch in NE paths and SE paths within SEW. In other words,
SpecTaint explores the speculative paths in a depth-first
manner. During the exploration, SpecTaint monitors whether
any termination condition is met, and restore to the last saved
state if there is any.

Execution State Rollback. It is crucial to restore the execution
state after the speculative execution is terminated, so as to
maintain the correctness of program execution. An execution
state includes the state of all the CPU registers and used mem-
ory regions. The execution state rollback has two operations,
state backup and resume. For a conditional branch, SpecTaint
first backups the current execution state before simulates
speculative execution on that branch. When the SE simulation
is terminated, SpecTaint resumes the backup state by resetting
the current execution environment with the backup state. To
backup an execution state, SpecTaint saves the emulator state,
e.g., all registers. For memory, it is too heavyweight to save
the entire memory, so we adopt a lightweight “copy-on-write”
approach. More specifically, SpecTaint keeps track of memory
regions that are modified during speculative execution. Before
the memory regions are modified, SpecTaint saves the original
values. When making a state rollback, SpecTaint writes the
original values back to the memory in a reversed order as
they are modified. Moreover, SpecTaint uses dynamic taint
tracking to detect Spectre gadgets. Thus, it also restores
taint information that is created during simulated speculative
execution. More details are discussed in Section IV-A.

Path Exploration. The path exploration considers two types
of path coverage, the NE and SE path coverage. The path
coverage on normal execution is used to explore more paths
during the normal execution. We utilize fuzzing techniques
such as AFL [2] to improve path coverage on normal execu-
tion. The SE path coverage is to measure how many speculative
paths are covered. The goal is to explore speculative execution
comprehensively so as to avoid missing Spectre gadgets on
uncovered speculative paths.

The switch point is the instruction that transfers the exe-
cution mode from NE to SE. SpecTaint treats a conditional
branch as a switch point and conducts the SE simulation. Once

Algorithm 1: Speculative Path Exploration Algorithm.
Input : Entry point: pc; SEW size: w; Backup state

set: saved state;
Output: gadgets: gadget set
gadget set← ∅ ;
inst count← 0;
Function explorer(pc, w):

while inst count < w do
if is terminator(pc) then

state = saved state.pop();
restore(state);
pc = state.pc;
explorer(pc, state.insn count);

end
if is branch(pc) then

saved state.push(checkpoint(pc));
foreach t ∈ get targets(pc) do

explorer(t, w − insn count);
end

end
execute(pc);
if gadget checker(pc) then

gadget set← pc;
end
pc← next pc;
inst count ++;

end
return;

entering the speculative execution mode, SpecTaint explores
each conditional branch and its targets for the speculative
exploration. The speculative path exploration algorithm is
shown in Algorithm 1. We use pc to represent the current
instruction, and gadget set to store the locations of detected
Spectre gadgets. The speculative execution path exploration
is a depth-first traversal on the control flow graph of the
program at the speculative execution mode. When exploring
speculative paths, SpecTaint will first check whether the
current execution path has reached the SEW limit w, or any
other termination conditions, and if so, restore to the last saved
state. If the current instruction at pc is a conditional branch,
SpecTaint will simulate a misprediction by walking through
both targets of this branch instruction. Before exploring each
target, SpecTaint will first backup the state and push it into a
stack saved state. After finishing the path exploration on a
target (e.g., reaching the SEW limit), SpecTaint will resume
the last saved state and continue for the next target. Along
with the exploration, SpecTaint conducts the gadget pattern
checking on the current instruction. If it matches, SpecTaint
will save this gadget into gadget set and continue exploration
until termination conditions are met.

Mitigating Path Explosion. As presented in our evaluation,
the length of each speculative execution path is bounded by the
SEW limit (see TableV). However, there can be a large number
of paths within this SEW limit in the worst case. Therefore,
we may still encounter a path explosion problem. According
to the analysis of our evaluation dataset, we identify two kinds
of cases where the exponential growth of paths may happen:
loops and recursive functions. We propose our approach to

5

address the path explosion issue. That is, SpecTaint has a
threshold on how many times simulation can happen on the
same branch. In real hardware, it is unlikely that speculative
execution can be triggered by the same branch repeatedly.
After iterations, the same branch will not be mispredicted,
since its memory value are very likely to be stored in registers
or be cached after iterations [35]. As demonstrated by Kocher
et al. [29], executing the same branch five times is enough to
train the branch predictor. Therefore, we also set the threshold
to five, and SpecTaint will not simulate speculative execution
repeatedly on the same branch if it reaches the threshold.
We admit that this approach might miss gadgets in paths we
have not explored yet. More details about false negatives are
discussed in Section VII.

IV. SPECTRE GADGET DETECTION

This section addresses how we detect Spectre gadgets
during dynamic speculative execution simulation. More specif-
ically, we first formalize the Spectre gadget definitions and then
describe how we check the patterns to detect potential Spectre
gadgets on speculative paths.

A. Dynamic Taint Tracking

If a variable is data-dependent on user inputs, we con-
sider this variable is under an attacker’s control. To find
exploitable Spectre gadgets, it is essential to find gadgets
that can be controlled through external inputs. Therefore, in
order to capture this control relation, we utilize dynamic taint
analysis to trace variables that are data-dependent on external
inputs during execution. To this end, we label user inputs
as taint sources and observe how the data flows from user
inputs. Specifically, we utilize the whole-system dynamic taint
analysis shipped with the platform we extend, DECAF [19],
and perform taint propagation along with the execution of the
program. DECAF’s tainting rules have been formally verified
to be sound (guarantee of no under-tainting at instruction
level), and most of them have also been verified to be precise
(guarantee of no over-tainting). The details are documented in
this paper [24]. We conduct dynamic taint analysis on both
NE and SE paths. Performing taint analysis on NE paths is
to ensure the propagation of taint labels in normal program
execution; performing taint analysis on SE paths is to facilitate
the gadget checker to detect exploitable Spectre gadgets. When
the SE path is terminated (e.g. when reaching SEW size), the
CPU state and memory modifications will be restored, so as the
taint information. When restoring to the previously saved state,
we also clean the variables which are marked as tainted during
the simulated speculative execution, in order to maintain the
correctness of taint propagation.

B. Spectre Gadget Modeling

In this section, we formulate the gadget patterns for two
types of Spectre V1 gadgets, Bounds Check Bypass (BCB)
and Bounds Check Bypass Store (BCBS). To facilitate the
discussion, we define the following notions before giving the
Spectre gadget definitions.

• c is a conditional branch instruction.
• T (c) denotes a set of instructions in a speculative execu-

tion trace from c.

• m(i) denotes i is a memory read instruction.
• str(i) denotes i is a memory write instruction.
• [i] denotes the memory value accessed by instruction i .
• dep(i , j) denotes instruction i is data dependent on j .
• t(i) denotes the operands of instruction i is tainted.
• δ denotes the size of speculative execution window.

BCB Gadget. In BCB attacks, the speculative load instruction
is under an attacker’s control, thus the attacker could read
arbitrary values from memory. Then another load instruction
is required to load the secret-indexed memory location with
the intention of leaking the secret. To leak the secret through
the cache side channel, the leak instruction has to use the
loaded secret as the index to read from memory, thus the
secret can be retrieved by monitoring the cache line state
changes. In general, the BCB gadget involves a set of array
operations and the index in the latter array operation is data-
dependent on the value from the former array [34]. Essentially,
the first array access is responsible for loading secrets, and the
second one is responsible for leaking secrets. However, not
all the code sequences matching such patterns are considered
as a BCB gadget. The BCB gadget demands the index of the
former array access should be under the attacker’s control, such
that the attacker could read arbitrary values from memory in
the target program space by carefully manipulating the input
values. To capture this control relation, we utilize dynamic
taint analysis to track data flow from external inputs, which
is discussed in IV-A. Suppose the speculative execution starts
from a conditional branch c, and we formalize our BCB gadget
pattern as Φbcb(c), and its definition is as follows:

Φbcb(c) := ∃i , j ∈ T (c).m(i) ∧m(j) ∧ dep(j , [i])

∧t(i) ∧ |c, j | < δ
(1)

BCBS Gadget. Unlike BCB gadget, BCBS uses a speculative
write (SW) to modify arbitrary memory locations. In BCBS
attacks, attackers control the index of an array that would
access out of boundary memory during speculative execution.
As a result, attackers can modify an arbitrary memory location
(e.g., return address) by manipulating the index of the array.
We formalize our BCBS gadget pattern as Φbcbs(c), and its
definition is as follows:

Φbcbs(c):= ∃i ∈ T (c), str(i) ∧ t(i) ∧ |c, i | < δ (2)

In both patterns, we leverage dynamic taint analysis to
determine whether the index of an array is under attackers’
control or not. If an instruction i is tainted, we consider i is
under attackers’ control, and t(i) is set to be true.

Gadget Classification. Our gadget patterns are similar to
what is proposed in oo7 [43]. The primary difference lies
in whether the branch instruction is tainted or not. Oo7 [43]
considers that the branch should be tainted and controlled by
the inputs. Thus attackers can poison the branch predictor to
cause intentional misprediction of that branch by executing the
victim program with carefully-constructed inputs. However, as
discovered by Canella et al. [17], the branch prediction buffers

6

are shared and commonly indexed by the virtual address of the
branch instruction, thus can be poisoned from another attack-
controlled process by executing a congruent branch with the
same virtual address. Based on this finding, Spectre gadgets
can be exploited in the same address space (i.e., intra-process)
or across address spaces (i.e., cross-process) [17]. Therefore,
only considering tainted branches will exclude cross-process
gadgets. Our gadget patterns cover both situations: if the
speculative execution is triggered by a taint conditional branch,
we will mark this gadget as an intra-process Spectre gadget;
otherwise, this gadget will be marked as a cross-process
Spectre gadget.

C. Gadget Detection

The gadget detection is to check whether the speculative
instruction trace conforms to the gadget patterns described
above. We deploy the gadget checker in simulated speculative
execution. Although both our gadget patterns involve memory
access operations, it is inefficient and unnecessary to check
all the memory access instructions on SE paths. Instead, we
only check memory access instructions which are tainted. To
this end, we instrument memory read and write operations.
To detect BCB gadgets, for each memory read, we check
whether its source is tainted. To make sure the dependency
dep(j , [i]) rule is satisfied between two instructions, we also
track whether the tainted operand of one instruction j is
propagated from instruction i. For BCBS gadgets, the pattern
captures any tainted memory write whose destination address
is marked as tainted within the SEW.

V. IMPLEMENTATION

We have implemented the prototype SpecTaint in C. More
specifically, we wrote a C plugin of 1 KLOC in C code
on top of DECAF [25] (a dynamic binary analysis platform
built on top of QEMU 1.0). This plugin implements the
state checkpoint management and Spectre gadget detection
components. We reused the dynamic taint analysis plugin of
DECAF for our taint analysis. Overall, the changes to develop
our prototype do not exceed 2 KLOC. Besides, to increase the
code coverage, we use AFL 2.52b [2] and honggfuzz [8] to
generate seed inputs.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate SpecTaint to answer the
following research questions:

1) How effective is SpecTaint to find Spectre gadgets com-
pared with other existing tools?

2) How efficient is SpecTaint to find Spectre gadgets in
real-world applications?

This section is composed as follows: First, we briefly
describe the experiment setup, the datasets, and the evaluation
metrics used in our experiments (Sections VI-A). Second, we
evaluate the efficacy of SpecTaint (Sections VI-B). Then, we
evaluate the efficiency of SpecTaint on real-world applications
(Sections VI-E). Finally, we conduct case studies of some
Spectre gadgets detected by SpecTaint in real-world applica-
tions and the deep learning framework Caffe (Sections VI-F).

A. Experiment Setup

Baseline Methods. We compare SpecTaint with three base-
line approaches: Spectre 1 Scanner from Red Hat (RH Scan-
ner) [5], oo7 [43] and SpecFuzz [39]. RH Scanner is a static
analysis tool that can be used to scan for Spectre gadgets.
Oo7 [43] is another static analysis tool that utilizes static taint
analysis to find Spectre gadgets. SpecFuzz [39] extends the
fuzzing technique to detect errors in speculative execution and
report Spectre gadgets. Another related work, SPECTECTOR,
leverages symbolic execution to detect information-flow differ-
ences introduced by speculative execution. Since the manual
settings to make it work on large programs are not open-
source, it is hard to evaluate it on our real-world benchmarks.
As discussed in SpecFuzz [39], the authors failed to run
SPECTECTOR on the real-world benchmarks due to a large
number of unsupported instructions. Therefore, we did not
compare with SPECTECTOR on real-world benchmarks (same
with SpecFuzz’s).

Evaluation Dataset. The evaluation is conducted on two
datasets, the Spectre Samples Dataset and Real-world Dataset.
Aligned with other baseline works, we utilize the same Spectre
Samples Dataset to demonstrate the detection capability of
SpecTaint. For baseline comparison with related works, we
collected six real-world applications and created two real-
world datasets.

• Spectre Samples Dataset. This dataset is designed to
demonstrate the efficacy of SpecTaint. We collected
15 Spectre V1 samples created by Paul Kocher [3] and
compiled 15 samples with the same configuration (gcc-
4.8.4 with O0) [39].

• Real-world V1 Dataset. For fair baseline comparison,
we use the same dataset as SpecFuzz’s [39]. This dataset
contains six widely used applications: one cryptographic
program from OpenSSL [12], a compression program
(Brotli [7]), and four parsing programs (JSON [10],
LibHTP [11], HTTP [9] and YAML [6]).

• Real-world V2 Dataset. Systematic baseline evaluation
is difficult due to the shortage of ground truth in real-
world programs. To solve this problem, we injected
known Spectre gadgets into programs from Real-world
V1 Dataset and created the Real-world V2 Dataset. We
adopt the same injection approach proposed in LAVA [20]
to build this dataset. More specifically, we utilize dynamic
taint analysis to find attack points which can be controlled
by input bytes that do not determine control flow and
have not been modified much (see [20] for more details).
Then we inject the Spectre gadgets from Spectre Sample
Dataset into target programs and add code to make
injected gadgets controllable via input bytes. As a result,
we injected 15 Spectre V1 gadgets from Spectre Sample
Dataset into 52 different locations in six programs. To
make a fair comparison, the input seeds used in the evalu-
ation are all generated by a fuzzing tool [8]. Therefore, we
have no clue whether the injected locations are covered
by input seeds in the evaluation. It is worth mentioning
that this dataset is used to evaluate the detection coverage
of SpecTaint and related works, instead of path/code
coverage, and we choose the same seed corpus with
SpecFuzz’s to guarantee a fair comparison.

7

Evaluation Metrics. For the Real-world V1 dataset, which
does not have ground truth, we manually verify the detection
results and calculate the precision rate to quantify the perfor-
mance of SpecTaint and baseline approaches. The precision
is calculated as precision(P) = TP

TP+FP , where TP is the
number of detected gadgets that are manually verified to be
exploitable, and FP is the number of detected gadgets that
are not exploitable based on manual analysis. For Real-world
V2 Dataset, we only consider injected Spectre gadgets to be
true positives and other reported results to be false positives.
Then we calculate the precision and recall to quantify the
effectiveness of the proposed approach and baseline methods.
The recall is calculated as recall(R) = TP

TP+FN , where TP is
the number of inserted gadgets which are correctly detected,
and FN is the number of inserted gadgets that are missed. The
precision is calculated as precision(P) = TP

TP+FP , where FP
is the number of detected gadgets other than injected ones. To
measure the efficiency, we reported runtime per speculative
execution and number of paths explored per speculative exe-
cution along with other statistics (see Section VI-E for more
details).

Configuration. The experiments were conducted on a desktop
with 16 GB memory, Intel Core i7 12 cores at 3.70 GHz
CPU, and running Linux 4.15. The Guest OS in QEMU is
Ubuntu 14.04 with 1 GB memory. The speculative window is
dependent on the space limit, i.e., ROB size and timing limits.
We follow the configuration used by SpecFuzz [39] and also
set the speculative window size to 250.

B. Baseline Evaluation on Spectre Samples Dataset

In this experiment, we compared SpecTaint with three
baseline tools on the Spectre Sample Dataset. As presented in
Table II, SpecTaint successfully detected all Spectre gadgets
in the Spectre Samples Dataset, while RH Scanner relies on
syntax-based pattern matching and missed three cases.

C. Baseline Comparison on Real-world V2 Dataset

We conducted the baseline comparison with three related
works, RH Scanner, oo7, and SpecFuzz, on Real-world V2
Dataset. In this experiment, we focused on detecting the
inserted gadgets, therefore we only consider inserted gadgets
to be true positives and all other detection results to be
false positives. For tools that utilize taint tracking to detect
Spectre gadget (oo7 and SpecTaint), we mark input bytes as
taint sources. Since the analysis of oo7 is very slow when
performing whole input bytes tainting, we only mark input
bytes that influence injected gadgets as taint sources. We adopt
the same configuration for SpecTaint. To compare with RH
Scanner and SpecFuzz, we have another configuration for
SpecTaint, where we mark all input bytes as tainted. The
results for the former configuration are labeled with “*” in
Table I. For dynamic analysis tools (SpecTaint and SpecFuzz),
we used an external fuzzing tool [8] to fuzz the six programs
for 10 hours and fed the generated seeds as inputs to run the
programs.

1 . . .
2 i f (p a r s e r−>t o k n e x t >= num tokens) {
3 / / I n s e r t e d S p e c t r e Gadget
4 # i f d e f SPECTRE VARIANT
5 i f (g l o b a l i d x < a r r a y 1 s i z e){
6 tmp &= a r r a y 2 [a r r a y 1 [g l o b a l i d x] ∗ 5 1 2] ;
7 }
8 # e n d i f
9 . . .

Listing 2: Missed Spectre gadget 1 by SpecFuzz.

1 . . .
2 i f (l−>f i r s t + i d x < l−>max size) {
3 r e t u r n (vo id ∗) l−>e l e m e n t s [l−>f i r s t + i d x] ;
4 } e l s e {
5 / / I n s e r t e d S p e c t r e Gadget
6 # i f d e f SPECTRE VARIANT
7 i n t temp = 0 ;
8 i n t ∗add r = &g l o b a l i d x ;
9 i f (∗ add r < a r r a y 1 s i z e) {

10 temp &= a r r a y 2 [a r r a y 1 [∗ add r] ∗ 5 1 2] ;
11 }
12 # e n d i f
13 . . .

Listing 3: Missed Spectre gadget 2 by SpecFuzz.

Table I shows that, when tainting gadget-related input
bytes, SpecTaint has no false positives and achieves a pre-
cision rate of 100%. Under the same configuration, however,
oo7 still produced false positives. For instance, it reported
13 gadget candidates in LibHTP, but 12 of them are false
positives. The results show that static taint analysis suffers
from the over-tainting issue, thereby is hard to achieve high
precision in detecting Spectre gadgets. As presented in Table I,
oo7 has many false negatives. For example, it missed all
inserted gadgets in YAML and Brotli. We examined these false
negatives and found the reasons are as follows. Firstly, the
detection results of oo7 [43] depend on the completeness of the
control-flow graph (CFG) extraction. Some inserted gadgets
are missed since it failed to extract a complete CFG due
to the limitation of the static approach. Also, oo7 is limited
by static inter-procedure taint tracking, and it missed many
inserted gadgets because it failed to propagate the taint source
to the injection points in the target programs. The evaluation
results substantiate our claim that dynamic taint analysis is
much more accurate and effective than static taint analysis in
detecting Spectre gadgets.

As presented in Table I, SpecTaint outperforms RH
Scanner and SpecFuzz under the whole input bytes tainting
configuration. Since we only consider injected gadgets to be
true positives in this dataset, other detection results are labeled
as false positives. The analysis results of other gadgets reported
by SpecTaint are presented in Table IV. Note that Spec-
Taint missed some injected gadgets in this experiment. We
further investigated the results and found that missed gadgets
are not covered by input seeds. However, SpecFuzz missed
many injected gadgets that are covered by input seeds and
detected by SpecTaint. According to our analysis, the reasons
are first, SpecFuzz adopts a prioritized simulation of branch
mispredictions; it selectively chooses whether to simulate the
misprediction or not on a conditional branch. Therefore, it
missed some injected gadgets. For example, as presented in
Listing 2, the seeds are able to reach the branch at line 2, but
SpecFuzz did not simulate branch misprediction over these

8

RH Scanner oo7 SpecFuzz SpecTaint
Program GT TP FP FN Precision Recall TP FP* FN Precision* Recall TP FP FN Precision Recall TP FP* FP FN Precision* Precision Recall

JSMN 3 1 448 2 0.002 0.33 3 0 0 1.00 1.00 2 17 1 0.105 0.67 3 0 1 0 1.00 0.750 1.00
Brotli 13 2 811 11 0.003 0.15 0 0 13 N/A 0 7 43 6 0.140 0.54 12 0 17 1 1.00 0.141 0.92
HTTP 9 3 128 6 0.023 0.33 1 1 8 0.5 0.11 8 9 1 0.471 0.89 8 0 6 1 1.00 0.574 0.89
LibHTP 7 4 254 3 0.016 0.57 1 12 6 0.077 0.14 5 79 2 0.059 0.71 7 0 14 0 1.00 0.333 1.00
YAML 10 2 36 8 0.526 0.20 0 0 10 N/A 0 4 215 6 0.018 0.40 7 0 3 3 1.00 0.700 0.70
SSL 10 3 100 7 0.029 0.30 7 8 3 0.467 0.70 6 55 4 0.098 0.60 10 0 16 0 1.00 0.385 1.00

TABLE I: Evaluation Results on Real-world V2 dataset (GT: ground truth; TP: true positive; FP: false positive; FN: false
negative). * means we only mark input bytes that influence injected gadgets as taint sources.

Total # RH Scanner oo7 SpecFuzz SpecTaint
Spectre 15 12 15 15 15

TABLE II: The number of detected Spectre gadgets from the
Spectre Sample Dataset.

JSMN Brotli HTTP LibHTP YAML SSL
SpecFuzz 16 68 9 91 140 589
Reproduce 17 43 9 79 215 55
SpecTaint 1 17 6 14 3 16
Tainted branch 1 13 6 9 0 13
Unique 0 6 1 0 0 4

TABLE III: The number of detected gadgets in Real-world V1
Dataset. Reproduce shows the results that were reproduced
using the open-sourced SpecFuzz implementation. Tainted
branch means the gadgets are detected during speculative
execution over tainted branches. Unique means the gadgets
are detected only by SpecTaint.

two conditional branches, and thus missed the inserted gadget
at line 5. Second, SpecFuzz stops the simulation and rolls
back to a previously saved state once an invalid memory
access or other exceptions are captured. Thus, it will miss
gadgets located after the invalid memory access or exception.
For example, as presented in Listing 3, SpecFuzz detected an
out-of-bounds access at line 3, then it stopped the simulated
speculative execution and restored. As a result, it failed to
detect the inserted gadget in the “else” branch.

Table I also shows that RH Scanner missed many inserted
gadgets. This is because it failed to explore the execution paths
of target programs due to the limitation of the static path
exploration it uses. It also produced a large number of detection
results due to the simplistic syntax-based gadget modeling. In
this experiment, since there are too many results reported by
RH Scanner and we only focus on inserted gadgets, we did not
inspect all detection results and only consider inserted gadgets
to be true positives. In conclusion, the evaluation results show
that SpecTaint outperforms state-of-the-art tools in terms of
precision and recall when analyzing real-world programs.

D. Baseline Evaluation on Real-world V1 Dataset

We further conducted a baseline comparison with another
dynamic analysis approach SpecFuzz [39]. In this experiment,
we evaluate two aspects of dynamic Spectre gadget detection
tools. The first is the effectiveness, which aims at comparing
the number of detected gadgets. Since there is no ground
truth in this dataset, we manually analyze detected gadgets
and consider exploitable gadgets to be true positives based on
human knowledge. The second is efficiency. This is to evaluate

SpecFuzz SpecTaint
Program TP FP Precision TP FP Precision
JSMN 1 16 0.059 1 0 1
Brotli 5 38 0.116 11 6 0.647
HTTP 2 7 0.222 2 4 0.333
LibHTP 3 76 0.038 3 11 0.214
YAML 0 215 0 0 3 0
SSL 2 53 0.036 6 10 0.375

TABLE IV: True positive, false positive and precision of
gadgets detected by SpecFuzz and SpecTaint on Real-world
V1 dataset.

the performance of gadget detection tools and runtime perfor-
mance of target programs after patching detected gadgets.

1 . . .
2 f o r (k = 1 ; k < wid th ; k ++)
3 {
4 o c t e t = p a r s e r−>r aw buf fe r . p o i n t e r [k] ;
5 v a l u e = (v a l u e << 6) + (o c t e t & 0x3F) ;
6 }
7 . . .

Listing 4: One false positive in YAML reported by
SpecFuzz.

Effectiveness. We evaluated the detection effectiveness on the
Real-world V1 Dataset, six original programs without gadget
instrumentation. We run SpecTaint and SpecFuzz on these
programs and manually analyze how many Spectre gadgets
are detected in these programs. To make a fair comparison,
we first reproduced similar detection results as reported in
the SpecFuzz paper, and used the same seed corpus to run
SpecTaint. More specifically, we ran SpecFuzz on each pro-
gram for 10 hours (single-thread mode), collected the detection
results and generated seeds; then we used the same seeds to
run SpecTaint on six applications. The number of detected
gadgets is presented in Table III. Note that for OpenSSL, we
were not able to reproduce similar results, so we listed it as
a reference. For the rest, we were able to reproduce similar
results as presented in their paper [39].

As presented in Table III, SpecTaint detected fewer gad-
gets than SpecFuzz did. Then we manually investigated each
of the detected gadgets and determined true positives and false
positives. As listed in Table IV, SpecTaint outperforms Spec-
Fuzz in terms of precision rate. Although SpecFuzz reported
a large number of gadget candidates, most of them are false
positives according to our manual inspection. For example,
some candidates reported by SpecFuzz only contain one out-
of-bound access, because SpecFuzz considers a memory error
to be a sign of a Spectre gadget. Furthermore, some false

9

positives are not data dependent on input bytes, as presented
in Listing 4, so they can not be controlled to read and leak
arbitrary values. We also found that some candidate gadgets
are under loops or constant comparison statements, where
speculation can be resolved shortly. Therefore, these gadgets
are considered false positives. This is also why SpecTaint
produces false positives (see more discussion in Section VII).
As presented in Table IV, SpecTaint has significantly higher
precision than SpecFuzz. For instance, SpecFuzz and Spec-
Taint detected three true positives for LibHTP, but SpecTaint
only has 11 false positives, while SpecFuzz reported 76 false
positives. Also, SpecFuzz missed some true positives that are
reported by SpecTaint. For instance, SpecTaint reported 11
true positives for Brotli, and six of them are not detected by
SpecFuzz (labeled as unique in Table III). One explanation
is that the gadget detection of SpecFuzz is probabilistic, and
generated seeds did not trigger memory errors when executing
those gadgets, thus they were missed by SpecFuzz’s sanitizer-
based gadget detector. This also substantiates that the taint-
based gadget pattern checking of SpecTaint is deterministic
because it detects any executed gadgets as long as they satisfy
the pre-defined gadget patterns.

1

2 s t a t i c BROTLI INLINE B r o t l i D e c o d e r E r r o r C o d e
P r o c e s s C o m m a n d s I n t e r n a l (

3 i n t s a f e , B r o t l i D e c o d e r S t a t e∗ s) {
4 . . .
5 / / t r a n s f o r m i d x i s t a i n t e d
6 i f (t r a n s f o r m i d x < (i n t) t r a n s f o r m s−>num transforms)

{
7 c o n s t u i n t 8 t∗ word = &words−>d a t a [o f f s e t] ;
8 i n t l e n = i ;
9 i f (t r a n s f o r m i d x == t r a n s f o r m s−>c u t O f f T r a n s f o r m s

[0]) {
10 memcpy(&s−>r i n g b u f f e r [pos] , word , (s i z e t) l e n) ;
11 } e l s e {
12 l e n = B r o t l i T r a n s f o r m D i c t i o n a r y W o r d (&s−>

r i n g b u f f e r [pos] , word , l en , t r a n s f o r m s ,
t r a n s f o r m i d x) ;

13 }
14 . . .
15 }
16 . . .
17 }
18 / / r e a d and l e a k s e c r e t u s i n g t r a n s f o r m i d x as i n d e x .
19 # d e f i n e BROTLI TRANSFORM PREFIX ID(T , I) ((T)−>t r a n s f o r m s

[((I) ∗ 3) + 0])
20 # d e f i n e BROTLI TRANSFORM PREFIX(T , I) (&(T)−>

p r e f i x s u f f i x [(T)−>p r e f i x s u f f i x m a p [
BROTLI TRANSFORM PREFIX ID(T , I)]])

21

22 i n t B r o t l i T r a n s f o r m D i c t i o n a r y W o r d (u i n t 8 t∗ d s t , c o n s t
u i n t 8 t∗ word , i n t l en ,

23 c o n s t B r o t l i T r a n s f o r m s∗ t r a n s f o r m s , i n t t r a n s f o r m i d x)
{

24 i n t i d x = 0 ;
25 c o n s t u i n t 8 t∗ p r e f i x = BROTLI TRANSFORM PREFIX(

t r a n s f o r m s , t r a n s f o r m i d x) ;
26 . . .
27 }

Listing 5: Speculative BCB gadget found in Brotli.

Performance Overhead after Patching. Afterward, we ap-
plied a serialization tool to patch all reported gadget locations
in six programs and then compared the performance of six
programs after patching the reported gadgets. Specifically,
we used a modified version of Speculative Load Hardening
(SLH) [18] shipped with SpecFuzz and patched the pro-
grams. We only patched the gadgets reported by SpecFuzz

Fig. 3: The performance overhead after patching w.r.t native.

and SpecTaint, and compared the runtime performance with
fully hardened programs (patching all conditional branches).
In this experiment, we used benchmarks shipped with the
programs, if available, as well as test benchmarks provided by
SpecFuzz. Figure 3 shows the comparison results. As we can
see, patching the gadgets detected by SpecTaint introduces
negligible overhead, compared with patching gadgets detected
by SpecFuzz and full hardening. On average, the performance
overhead was reduced by 55% compared with SpecFuzz’s
patching and 73% compared with full hardening. As presented
in Table III, SpecTaint produced fewer gadget candidates
than SpecFuzz. Therefore, the runtime overhead introduced by
patching those gadgets were reduced greatly. We also found
that in some cases SLH patching introduces large runtime
overhead. For instance, SpecFuzz found three more gadget
candidates in HTTP, but the performance slowdown caused
by these three candidates is almost 60%. It is because these
three candidates are located on hot paths that are exercised
frequently. This also demonstrates the importance of high
precision in gadget detection.

E. Efficiency Evaluation

In this experiment, we evaluated the runtime performance
of SpecTaint on the six real-world applications. Since the
workflow of SpecTaint is fundamentally different from Spec-
Fuzz, it is not easy to have an end-to-end runtime comparison.
SpecFuzz extends the fuzzing technique and its fuzzing proce-
dure and gadget detector are closely coupled. While SpecTaint
is a detection tool and can receive test cases from fuzzers. In
this evaluation, we marked the user inputs as taint sources and
simulate speculative execution over tainted branches. Note that
SpecTaint is able to simulate speculative execution on every
conditional branch. The runtime of simulating speculative over
tainted branches is reasonable to reflect the efficiency because,
as presented in Table III, around 80% of detected gadgets are
enclosed by tainted branches (intra-process gadgets IV-B).

We collected several statistical results including the to-
tal number of executed branches at the normal mode, the

10

Lib Name # of Seeds Binary Size Analysis Time(h) # of Branch # of Tainted Branch # of Nested Branch Path/Branch Time/Path(ms)
JSMN 6204 17K 10.75 554017 178542 5498472 31 7.0
Brotli 100 440K 0.65 33912 8900 274948 31 8.6
HTTP 944 85K 5.24 184044 22531 94477 5 200.0

LibHTP 155 549K 0.4 108101 29836 423263 14 3.4
YAML 2525 251K 6.84 5311472 604917 30303111 50 0.8

SSL 46 11M 17.5 122694 56914 189332 4 432.0

TABLE V: Runtime Performance Results on real-world applications.

total number of tainted branches for speculative execution
simulation, the total number of nested branches explored in
speculative execution mode, and the number of speculative
execution paths on average to be explored. We also collected
the execution time for each simulated speculative execution
path. The execution time includes the taint analysis, path
exploration time, and gadget detection time.

Since SpecTaint extends a whole-system emulation plat-
form and performs dynamic taint analysis, by design it pays
more runtime overhead for speculative taint analysis. However,
as presented in Table V, we can see that SpecTaint is
able to analyze large programs within a reasonable amount
of time. For example, for Brotli, SpecTaint finished 8,900
branches as switch points for speculative execution simulation
within 40 minutes. That means that SpecTaint can finish
the SE path exploration including state management, taint
analysis, and pattern checking for one switch point within
0.04s. Besides, SpecTaint has reasonable analysis time. It
can finish the analysis within a few hours for most of the
programs; only JSMN and SSL exceed 10 hours. In fact, SSL
is substantially more complex than the other programs, and
running it in the emulator is already very slow. On average,
SpecTaint takes around 6.8 hours to analyze one program.
Compared with SpecFuzz, which takes 10 hours to reproduce
the results presented in Table III, the analysis time in Table V
suggests that SpecTaint can achieve precise simulation of
speculative execution and perform dynamic speculative taint
analysis without introducing much overhead.

F. Case Study

As presented in Table III, SpecTaint discovered 11 new
Spectre gadgets that were not detected by SpecFuzz [39].
After manual inspection, we confirmed that ten of them are
exploitable and one gadget is considered a false positive (not
exploitable, see VII). In this section, we showcase one detected
Spectre gadget from Real-world V1 Dataset due to the page
limitation. To further demonstrate the capability of SpecTaint,
we present one Spectre gadget detected by SpecTaint from a
well-known machine learning framework, Caffe [1].

Speculative BCB in BROTLI. Brotli is a generic-purpose
lossless compression program. SpecTaint found an exploitable
Spectre gadget in function ProcessCommandsInternal and
BrotliTransformDictionaryWord. Listing 5 presents the relevant
code snippets. Before calling the function BrotliTransformDic-
tionaryWord at line 11, it first checks whether transform -
idx is less than num transforms to avoid potential
overflow. In function BrotliTransformDictionaryWord, it uses
transform idx as index to perform two memory ac-
cesses using a macro BROTLI TRANSFORM PREFIX (load
a value from an array using transform idx, then uses

the loaded value as index to read another array). If the
branch at line 5 was mispredicted during speculative execu-
tion, BROTLI TRANSFORM PREFIX would perform out-of-
bound memory access and leak the loaded value via converted
cache side channels.

In this example, three properties make this Spectre gadget
exploitable. Firstly, transform idx is marked as tainted,
which is propagated from user inputs. This means the attacker
can control its value by manipulating the input. Secondly,
computing the branch outcome at line 5 may take hundreds
of CPU cycles, when transforms->num transforms
is not in cache and needs to be fetched from memory. Thus
it opens a large speculative execution window and allows the
execution of the following gadget during speculative execution.
Finally, the macro BROTLI TRANSFORM PREFIX loads the
out-of-bound value using transform idx as an index, then
use the loaded value as an index to access another array;
it first reads potential secret via an out-of-bound memory
access and leaks the secret by using the secret as an index
to access another array. Thus, the attacker can retrieve the
secret via the cache side channel. As mentioned, this gadget
is newly detected by SpecTaint. Although it is hard to find
the reason why SpecFuzz missed this gadget, we speculate
that SpecFuzz failed to detect it due to incomplete speculative
execution simulation. As discussed earlier, SpecFuzz favors
fuzzing throughput by adopting a lightweight speculative ex-
ecution simulation strategy, which selectively overlooks some
speculative paths.

1 t e m p l a t e <typename Dtype>
2 vo id So lve r<Dtype > : : UpdateSmoothedLoss (Dtype l o s s , i n t

s t a r t i t e r ,
3 i n t a v e r a g e l o s s) {
4 i f (l o s s e s . s i z e () < a v e r a g e l o s s) {
5 l o s s e s . push back (l o s s) ;
6 i n t s i z e = l o s s e s . s i z e () ;
7 smoothed loss = (smoothed loss ∗ (s i z e − 1) +

l o s s) / s i z e ;
8 } e l s e {
9 i n t i d x = (i t e r − s t a r t i t e r) % a v e r a g e l o s s ;

10 smoothed loss += (l o s s − l o s s e s [i d x]) /
a v e r a g e l o s s ;

11 l o s s e s [i d x] = l o s s ;
12 }
13 }

Listing 6: Speculative Bounds Check Bypass (on Stores)
gadget found in Caffe framework.

Caffe (v1.0). We also show a typical bounds check bypass
on store gadget in Listing 6. This gadget is discovered in
the Caffe framework using CIFAR-10 as the input model.
We found the gadget during the model training process. In
this experiment, we focus on the coverage of the internal
code invoked by the test model, rather than the precision

11

of the model itself. Thus, we trained the CIFAR-10 model
with the CIFAR-10 dataset consisting of 60000 images in 10
classes. The function UpdateSmoothedLoss is defined in
src/caffe/solver.cpp and is frequently called during
the training process. The branch outcome at line 4 depends
on the value from losses .size(), which may take
hundreds of cycles to compute. In this case, the CPU will
predict the branch target and continue to execute speculatively.
The attackers can carefully poison the branch predictor into
mispredicting the direction of the branch. This may result
in the CPU making a wrong speculative prediction over this
branch, and the value of idx will be greater than its value in
normal execution. As a result, the idx would reach out of the
array boundary, and a boundary check bypass on store would
happen at line 11.

VII. DISCUSSION

In this section, we discuss the limitations of SpecTaint
and possible remedies.

1 s t a t i c B r o t l i D e c o d e r E r r o r C o d e ReadSymbolCodeLengths (
2 u i n t 3 2 t a l p h a b e t s i z e , B r o t l i D e c o d e r S t a t e∗ s) {
3 . . .
4 code len = BROTLI HC FAST LOAD VALUE(p) ;
5 i f (code len < BROTLI REPEAT PREVIOUS CODE LENGTH) {
6 P r o c e s s S i n g l e C o d e L e n g t h (code len , &symbol , &

r e p e a t , &space ,
7 &prev code len , s y m b o l l i s t s , c o d e l e n g t h h i s t o

, next symbol) ;
8 }
9 . . .

10 }
11 s t a t i c BROTLI INLINE vo id P r o c e s s S i n g l e C o d e L e n g t h (

u i n t 3 2 t code len ,
12 u i n t 3 2 t∗ symbol , u i n t 3 2 t∗ r e p e a t , u i n t 3 2 t∗ space ,
13 u i n t 3 2 t∗ prev code len , u i n t 1 6 t∗ s y m b o l l i s t s ,
14 u i n t 1 6 t∗ c o d e l e n g t h h i s t o , i n t ∗ next symbol) {
15 ∗ r e p e a t = 0 ;
16 i f (code len != 0) {
17 s y m b o l l i s t s [next symbol [code len]] = (u i n t 1 6 t)

(∗ symbol) ;
18 next symbol [code len] = (i n t) (∗ symbol) ;
19 ∗prev code len = code len ;
20 ∗ s p a c e −= 32768U >> code len ;
21 c o d e l e n g t h h i s t o [code len] + + ;
22 }
23 (∗ symbol) ++;
24 }

Listing 7: A false positive in Brotli detected by SpecTaint.

False positives in detection. In this section, we discuss the
cases where detected gadgets are not exploitable. First, when
the triggering instruction can be resolved shortly, e.g., loops
and constant comparison, the following gadgets cannot be
executed before the speculation is resolved. However, in this
case, SpecTaint would simulate speculative execution with the
default SEW and detect the following gadgets that satisfy the
pre-defined pattern.

Second, when the triggering instruction opens a large SEW
(e.g., due to a cache miss), SpecTaint may produce false posi-
tives in some cases. For instance, SpecTaint detects a Spectre
gadget in Brotli shown in Listing 7. In this example, the
code len is tainted, which is propagated from user inputs.
If the branch at line 4 was mispredicted and the CPU specula-
tively executes the function ProcessSingleCodeLength,
it would pass an out-of-bounds code len to function

ProcessSingleCodeLength. At line 17, the out-of-
bounds code len is used as an index to access the array
next symbol; the loaded value is further used as an index
to access another array symbol list. Thus, the attack
can retrieve the out-of-bound value by monitoring the cache
state. In practice, this gadget is hard to exploit to launch a
Spectre V1 attack because the out-of-bound access at line
17 uses code len as an index. By the time code len
is available, the conditional branch at line 5 has already been
resolved, which means the speculative execution is terminated.
According to our pattern checking policy, SpecTaint still treats
it as a Spectre gadget.

To guarantee a low false negative rate, we conservatively
assume the maximum values for CPU optimization parameters
such as ROB limit. This means our detected gadgets may not
be exploitable in some processor models.

Incomplete path coverage. Like other dynamic analysis tools,
our approach is also bounded by the quality of test cases.
In other words, our approach would fail to detect gadgets in
uncovered paths. We can leverage state-of-the-art fuzzers [2],
[8] to increase path coverage. Moreover, SpecTaint can be
combined with other static Spectre gadget detection tools [5],
[43] and test the uncovered paths to improve coverage. To
ensure security, all the uncovered paths can be hardened
conservatively for security-sensitive projects.

Control dependent attacks. Our Spectre gadget detection
depends on dynamic taint analysis that keeps track of direct
data flows. It will not detect Spectre gadgets that are control
dependent on user inputs. Compared with the gadgets that
are controlled via direct data-floe dependency, the control-
dependent gadgets often are of limited attack capabilities and
are currently beyond the scope of this work. We leave the
investigation of this kind of gadgets as future work.

VIII. RELATED WORK

We have discussed related works closely throughout the
paper. In this section, we briefly survey additional related
works. We focus on gadget detection techniques. Many other
approaches aim at designing the hardware architecture to
defeat the transient execution vulnerabilities [36], [47], [49].
Since they are orthogonal to our approach, we will only briefly
discuss these approaches in this section.

Transient Execution Attack Variants. Transient execution
attacks include Spectre-type attacks and Meltdown-type at-
tacks in general. Spectre-type attacks can be categorized into
Spectre-PHT [29], Spectre-BTB [29], [31], Spectre-RSB [30],
[34] and Spectre-STL [17], [37]. They focus on exploiting
different hardware caches. For example, Spectre-PHT attacks
poison the Pattern History Table (PHT) to trigger speculative
execution. Spectre-BTB exploits the Branch Target Buffer
(BTB). Meltdown-type attacks usually exploit fault-handling
exceptions such as virtual memory exception [16], [32], [45],
or an exception reading a disabled or privileged register [26],
[42]. Aligned with other tools [23], [39], we only focus on
detecting gadgets in victim programs that can be exploited by
Spectre V1 attacks and leak sensitive data through cache side
channels.

12

Spectre Gadget Detection. Spectre gadget detection can be
categorized as static and dynamic detection techniques. One
direction of the static analysis technique is to model the Spectre
gadget by using its syntax pattern, such as Spectre 1 Scanner
from RedHat [5] and MSCV Spectre 1 pass [41], and conduct
the pattern search on binaries for potential candidates. These
tools produce a large number of false positives. Furthermore,
their approaches are not generic and only designed for gad-
gets with special patterns. Another direction is to explore a
more precise modeling by using symbolic execution or static
taint analysis to detect Spectre gadgets. These approaches
are more reliable and generic [23], [43], but they are still
bounded by limitations of the static analysis. For example,
oo7 utilizes a static tainting analysis to capture the data-
dependency of Spectre gadget for detection. However, it inher-
its the limitation of static taint analysis, such as over-tainting
and under-tainting issues. SPECTECTOR [23] proposes to
use symbolic execution to automatically prove speculative
non-interference, or to detect violations. However, it inherits
the limitations of symbolic execution and has to sacrifice
soundness and completeness of analysis when analyzing large
programs. SpecFuzz [39] extends the fuzzing technique and
detect memory errors during simulated speculative execution.
However, to ensure high fuzzing throughput, the simulation
logic is over-simplified, resulting in poor precision and recall.
Compared with these approaches, SpecTaint is designed to
provide a more precise detection approach that is also scalable
for detecting Spectre gadgets from real-world programs.

Mitigation and Defense. Intel proposed hardware fixes [44]
including improved process and privilege-level separation,
but they are only designed for Spectre 2.0. ConTExT [36]
provides a new architecture design using a temporary buffer
to mitigate information leakage during speculative execution.
It relies on users to identify the confidential information and
perform dynamic taint analysis on hardware to keep track
of the confidential information. Other approaches [28], [46]
either proposed to isolate the cache side channel or provide
a speculative buffer as a temporary buffer to mitigate the
cache leakage, but they are still at the design stage. At the
system level, the kernel page-table isolation is proposed to
mitigate Meltdown attack [22]. Many approaches [4], [18]
start to add mitigation instructions (serializing instructions or
mitigation instructions) at the compiler time to mitigate Spectre
attacks. Since SpecTaint can effectively provide more precise
Spectre gadget candidates, it can greatly reduce the number
of instructions for mitigation insertion. Therefore, SpecTaint
can improve the runtime performance after patching, which
has been substantiated in Section 3.

Dynamic Analysis. PIN [33], DynamoRIO [15], and Val-
grind [38] are powerful dynamic instrumentation tools. In fact,
our approach can also be implemented on these platforms.
Xforce [40] is the first tool to propose the idea of force execu-
tion, but Xforce is used for code coverage based exploration,
and it is not designed for the speculative execution simulation.
Our approach is inspired by their approach and builds the
unique features for the speculative execution simulation that
enables dynamic taint analysis on speculative paths.

IX. CONCLUSION

In this paper, we enable dynamic taint analysis for Spectre
V1 gadget detection. To this end, we present a system-level
approach to simulate and explore the speculative execution
and provide fine-grained gadget patterns for precise gadget
detection. We have implemented a prototype SpecTaint to
demonstrate the efficacy of our proposed approach. We eval-
uated the effectiveness of SpecTaint on our Spectre Samples
Dataset and real-world programs. Our experimental results
demonstrate that SpecTaint outperforms the existing meth-
ods with reasonable runtime efficiency, and it discloses new
Spectre V1 gadgets from real-world applications.

AVAILABILITY

The source code of SpecTaint and the dataset used in the
evaluation can be found via https://github.com/bitsecurerlab/
SpecTaint.git.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for
their valuable suggestions and comments. This work was
supported by the Office of Naval Research under Award No.
N00014-17-1-2893. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies.

REFERENCES

[1] Caffe. https://caffe.berkeleyvision.org/.
[2] American Fuzzy Lop (2.52b). http://lcamtuf.coredump.cx/afl/, 2011.
[3] Spectre Mitigations in Microsoft’s C/C++ Compiler. https://www.

paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html, 2018.
[4] Spectre mitigations in MSVC. https://blogs.msdn.microsoft.com/

vcblog/2018/01/15/spectre-mitigations-in-msvc/, 2018.
[5] SPECTRE Variant 1 scanning tool. https://access.redhat.com/blogs/

766093/posts/3510331, 2018.
[6] LibYAML. https://pyyaml.org/wiki/LibYAML, 2019.
[7] Brotli. https://brotli.org, Accessed: June 2020.
[8] Honggfuzz. http://honggfuzz.com/, Accessed: June 2020.
[9] HTTP. https://github.com/nodejs/http-parser, Accessed: June 2020.

[10] JSMN. https://github.com/zserge/jsmn, Accessed: June 2020.
[11] LibHTP. https://github.com/OISF/libhtp, Accessed: June 2020.
[12] OpenSSL. https://www.openssl.org/, Accessed: June 2020.
[13] Intel. https://xem.github.io/minix86/manual/

intel-x86-and-64-manual-vol3/o fe12b1e2a880e0ce-273.html, cited
by 2019.

[14] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In In
Proceedings of the USENIX Annual Technical Conference (ATC ’05),
ATC, 2005.

[15] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An
infrastructure for adaptive dynamic optimization. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’03, 2003.

[16] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the intel
SGX kingdom with transient out-of-order execution. In 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[17] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and
Daniel Gruss. A systematic evaluation of transient execution attacks and
defenses. In 28th USENIX Security Symposium (USENIX Security 19),
2019.

13

https://github.com/bitsecurerlab/SpecTaint.git
https://github.com/bitsecurerlab/SpecTaint.git
https://caffe.berkeleyvision.org/
http://lcamtuf.coredump.cx/afl/
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://access.redhat.com/blogs/766093/posts/3510331
https://access.redhat.com/blogs/766093/posts/3510331
https://pyyaml.org/wiki/LibYAML
 https://brotli.org
http://honggfuzz.com/
https://github.com/nodejs/http-parser
https://github.com/zserge/jsmn
https://github.com/OISF/libhtp
https: //www.openssl.org/
https://xem.github.io/minix86/manual/intel-x86-and-64-manual-vol3/o_fe12b1e2a880e0ce-273.html
https://xem.github.io/minix86/manual/intel-x86-and-64-manual-vol3/o_fe12b1e2a880e0ce-273.html

[18] C Carruth. Speculative load hardening. https://docs.google.com/
document/d/1wwcfv3UV9ZnZVcGiGuoITT61eKo3TmoCS3uXLcJR0/
edit#heading=h.phdehs44eom6., 2018.

[19] Ali Davanian, Zhenxiao Qi, Yu Qu, and Heng Yin. Decaf++: Elas-
tic whole-system dynamic taint analysis. In the 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID),
September 2019., RAID, 2019.

[20] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, and R. Whelan. Lava: Large-scale automated vulnerabil-
ity addition. In 2016 IEEE Symposium on Security and Privacy (SP),
pages 110–121, 2016.

[21] J. Fustos and H. Yun. Spectrerewind: A framework for leaking secrets
to past instructions. arXiv, 2003.12208.

[22] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. Kaslr is dead: Long live
kaslr. In the 9th International Symposium on Engineering Secure
Software and Systems (ESSoS’17), 2017.

[23] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and
Andrés Sánchez. SPECTECTOR: principled detection of speculative
information flows. CoRR, abs/1812.08639, 2018.

[24] A. Henderson, L. K. Yan, X. Hu, A. Prakash, H. Yin, and S. McCa-
mant. Decaf: A platform-neutral whole-system dynamic binary analysis
platform. IEEE Transactions on Software Engineering, 43(2):164–184,
2017.

[25] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu,
Xujiewen Wang, Rundong Zhou, and Heng Yin. Make it work, make it
right, make it fast: Building a platform-neutral whole-system dynamic
binary analysis platform. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA, 2014.

[26] Intel. Q2 2018 speculative execution side channel update. 2018.
[27] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-

marev, and N. Abu-Ghazaleh. Safespec: Banishing the spectre of a
meltdown with leakage-free speculation. In 2019 56th ACM/IEEE
Design Automation Conference (DAC), pages 1–6, 2019.

[28] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer.
Dawg: A defense against cache timing attacks in speculative execution
processors. 2018.

[29] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. CoRR, abs/1801.01203, 2018.

[30] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre returns! speculation attacks
using the return stack buffer. In Proceedings of the 12th USENIX
Conference on Offensive Technologies, WOOT’18, 2018.

[31] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. In 26th USENIX Security Symposium
(USENIX Security 17), 2017.

[32] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[33] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’05,
2005.

[34] Giorgi Maisuradze and Christian Rossow. Ret2spec: Speculative execu-
tion using return stack buffers. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security(CCS’18), 2018.

[35] Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti,
Engin Kirda, William Robertson, and Anil Kurmus. Speculator: A tool
to analyze speculative execution attacks and mitigations. In Proceedings
of the 35th Annual Computer Security Applications Conference, ACSAC
’19, page 747–761, New York, NY, USA, 2019. Association for
Computing Machinery.

[36] Claudio Canella Robert Schilling Florian Kargl Daniel Gruss

Michael Schwarz, Moritz Lipp. Context: A generic approach for
mitigating spectre. Proceedings of the Annual Network and Distributed
System Security Symposium (NDSS’20), 2020.

[37] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz,
Jo Van Bulck, Daniel Genkin, Daniel Gruss, Frank Piessens, Berk Sunar,
and Yuval Yarom. Fallout: Reading kernel writes from user space.
CoRR, 2019.

[38] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’07, 2007.

[39] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof
Fetzer. Specfuzz: Bringing spectre-type vulnerabilities to the surface.
CoRR, abs/1905.10311, 2019.

[40] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and
Zhendong Su. X-force: Force-executing binary programs for security
applications. In 23rd USENIX Security Symposium (USENIX Security
14), 2014.

[41] Read Sprabery, Konstantin Evchenko, Abhilash Raj, Rakesh B. Bobba,
Sibin Mohan, and R H Campbell. Scheduling, isolation, and cache
allocation: A side-channel defense. 2018.

[42] Julian Stecklina and Thomas Prescher. Lazyfp: Leaking FPU register
state using microarchitectural side-channels. CoRR, abs/1806.07480,
2018.

[43] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra,
and Abhik Roychoudhury. oo7: Low-overhead defense against spectre
attacks via binary analysis. CoRR, abs/1807.05843, 2018.

[44] T. Warren. Intel processors are being redesigned to protect against
spectre. 2018.

[45] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F
Wenisch, and Yuval Yarom. Foreshadow-ng: Breaking the virtual
memory abstraction with transient out-of-order execution. Technical
report, 2018.

[46] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher W. Fletcher, and Josep Torrellas. Invisispec: Making speculative
execution invisible in the cache hierarchy. 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

[47] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas.
Secure hierarchy-aware cache replacement policy (sharp): Defending
against cache-based side channel atacks. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA ’17,
2017.

[48] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution,
low noise, l3 cache side-channel attack. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 719–732, San Diego, CA,
August 2014. USENIX Association.

[49] Si Yu, Xiaolin Gui, and Jiancai Lin. An approach with two-stage mode
to detect cache-based side channel attacks. In Proceedings of the 2013
International Conference on Information Networking (ICOIN), ICOIN
’13, 2013.

14

https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT 61eKo3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6.
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT 61eKo3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6.
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT 61eKo3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6.

	Introduction
	Overview
	Motivating Example
	Background and Rationale
	System Overview

	Dynamic Speculative Execution Simulation
	Misprediction Simulation
	Exploration of Speculative Execution Paths

	Spectre Gadget Detection
	Dynamic Taint Tracking
	Spectre Gadget Modeling
	Gadget Detection

	Implementation
	Experimental Evaluation
	Experiment Setup
	Baseline Evaluation on Spectre Samples Dataset
	Baseline Comparison on Real-world V2 Dataset
	Baseline Evaluation on Real-world V1 Dataset
	Efficiency Evaluation
	Case Study

	Discussion
	Related Work
	Conclusion
	References

