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This paper is concerned with the oscillatory properties of second order non-linear

dynamic equation with integro forcing term on an arbitrary time scales. We reduce

our original dynamic equation into an alternate equation by introducing a function of

forward jump operator. To study oscillations we establish some crucial Lemmas and employ

generalized Riccati transformation technique which transforms our second order dynamic

equation into the �rst order dynamic equation on an arbitrary time scales. These results

also guarantee that the solution of our equation oscillates. Furthermore, we establish the

Kamenev-type oscillation criteria of our system. At the end, we consider a second order

dynamic equation on time scales with deviating argument and compare it with our result

which gives the su�cient conditions of oscillation of it.
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Introduction and Preliminaries

The oscillation theory of di�erential equation and di�erence equation has been
receiving a lot of attention in the past few decades. It is a very important concept in the
qualitative behaviour of the solutions of both types of equations. Many researchers have
taken an interest in studying the oscillation and non-oscillation criteria of the solution of
both di�erential and di�erence equations [1�3]. The problem of obtaining the su�cient
conditions for oscillation of both types of equations takes much time. Therefore, it is
necessary to �nd a single way for both equations.

The time scale theory which removes this ambiguity has been �rst introduced by a
German mathematician Stefan Hilger in his Ph.D. dissertation (1988) [4]. The signi�cance
of this theory is that it does not only avoid the dual analysis but also harmonize both
continuous and discrete calculus.

Time scale is a non-empty closed subset of the real numbers (i.e., R), e.g., set of
natural numbers (N), integers (Z), Cantor set, set of harmonic numbers etc. In this way,
the results do not only relate to the set of real numbers or set of integers but also
pertain to more general times scales. The three most popular examples of calculus on
time scales are di�erential calculus (T = R), di�erence calculus (T = Z), and quantum
calculus

(
T = qZ

∪
{0}, q > 1

)
, for more details see [5, 6] and references therein. It has

many applications in various �elds, e.g., population dynamics, economics, neural networks,
quantum physics and social science etc. [7, 8].

We brie�y recall some basic de�nitions, useful Theorems, Lemmas, assumptions and
basic facts of time scales etc.
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De�nition 1. [5, 6] For t ∈ T, we de�ne a forward jump operator σ : T → T by
σ(t) := inf{s ∈ T : s > t}, if t < σ(t) and t < supT as well as t = σ(t), then t
is right-scattered and right dense respectively. A backward jump operator ρ : T → T by
ρ(t) := sup{s ∈ T : s < t}, if t > ρ(t) and t > inf T as well as t = ρ(t), then t is
left-scattered and left dense respectively. The graininess operator µ : T → [0,∞) is de�ned
by µ(t) = σ(t)− t.

Remark 1. We put inf ϕ = supT (i.e., σ(t) = t if T has a maximum t), supϕ = inf T
(i.e., ρ(t) = t if T has a minimum t).

De�nition 2. [5,6] A function f : T → R is called rd-continuous provided it is continuous
at all right-dense points in T and its left-sided limit exists (�nite) at left-dense points in
T, denoted by Crd = Crd(T) = Crd(T,R). We de�ne some notations as follows:

+C∆
rd(T) =

{
q : q(t) is positive rd-continuous function and q∆(t) ∈ Crd(T)

}
.

+C∆+
rd (T) =

{
q : q(t), q∆(t) are positive rd-continuous functions

}
.

De�nition 3. [5, 6] A function G : T → R is called an anti-derivative of g : T → R,
provided G∆(t) = g(t)∀t ∈ T. Then ∀a, b ∈ T, the Cauchy integral is de�ned by∫ b

a

g(s)∆(s) = G(b)−G(a).

De�ne

Tκ =

{
T− {l}, if T has a left-scattered maximum l,
Tκ = T, otherwise.

De�nition 4. [5,6] For a function f : T → R and t ∈ Tκ, we de�ne f∆(t), to be a number
(provided it exists) with the property that given any ϵ > 0, there exists a neighborhood
A = (t− δ, t+ δ)

∩
T for some δ > 0 such that∣∣[f(σ(t))− f(r)]− f∆(t)[σ(t)− r]

∣∣ ≤ ϵ|σ(t)− r| ∀r ∈ A.

Thus, we call f∆(t) the delta or Hilger derivative of f at t. f is also called di�erentiable
at t.

Theorem 1. [5, 6] For the functions g, f : T → R and t ∈ Tκ, we have the following:
1. If f is di�erentiable at t, then f is continuous at t;

2. If f is continuous at t and t is right-scattered, then f has a delta derivative at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
;

3. If t is right-dense, then f is di�erentiable at t if the limit

f∆(t) = lim
s→t

f(t)− f(s)

t− s

exists and has a �nite value;

4. If f is di�erentiable at t, then

fσ = f(σ(t)) = f(t) + µ(t)f∆(t);
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5. If f and g both are di�erentiable at t, then the product fg : T → R is di�erentiable
at t and

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t));

6. If g(t)g(σ(t)) ̸= 0 with g(t) ̸= 0, then f(t)
g(t)

is di�erentiable at t and(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

De�nition 5. [5, 6] A function q : T → R is called regressive if 1 + µ(t)q(t) ̸= 0, ∀t ∈ T.
We denote the collections of all functions h : T → R which are rd-continuous and regressive
by R and R+ = {q ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}.

De�nition 6. [5,6] (Time scale version of exponential function). If q ∈ R, then we de�ne
the exponential function by

eq(t, s) = exp

(∫ t

s

ηµ(τ) (q(τ))∆τ

)
, ∀t ∈ T, s ∈ Tκ,

where ηh(z) is the cylinder transformation, which is de�ned by

ηh(z) =

{
log (1+hz)

h
, if h ̸= 0,

z, if h = 0.

De�nition 7. [5, 6] If q ∈ R, then the �rst order linear dynamic equation

y∆(t) = q(t)y(t) (1)

is called regressive.

Theorem 2. [5,6] Suppose that (1) is regressive and �x t0 ∈ T. Then eq(., t0) is a solution
of the initial value problem

y∆(t) = q(t)y(t), y(t0) = 1 (2)

on T.

Theorem 3. [5, 6] If (1) is regressive, then eq(., t0) is the only solution of (2).

Theorem 4. [5, 6] If p, q ∈ R, then

1. e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

2. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

3. e⊖p(t, s) =
1

ep(t,s)
;

4. ep(t, s)eq(t, s) = ep⊕q(t, s);
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5.
(

1
ep(.,s)

)∆

= − p(t)
eσp (.,s)

;

6. If q ∈ R+, then eq(t, s) > 0 for all t ∈ T.

In this paper, we study the oscillation criteria of the second order non-linear dynamic
equation with integro forcing term on time scale T:

y∆∆(t) + βy∆(t) = B(t)y(t) +H∆

(
t, y(t),

∫ t

−∞
J (t− s)H(s, y(s))∆ s

)
, (3)

where B,J : T → R are the function of t, and the forcing terms H : T × R2 → R and
H : T × R → R. For the alternate form of equation (3), we multiply (3) by a function
rσ(t). We have

rσ(t)y∆∆(t)+βrσ(t)y∆(t) = rσ(t)B(t)y(t)+rσ(t)H∆

(
t, y(t),

∫ t

−∞
J (t− s)H(s, y(s))∆ s

)
.

From above relation, we obtain

rσ(t)y∆∆(t) + r∆(t)y∆(t)︸ ︷︷ ︸−r∆(t)y∆(t) + βrσ(t)y∆(t) =

= rσ(t)B(t)y(t) + rσ(t)H∆

(
t, y(t),

∫ t

−∞
J (t− s)H(s, y(s))∆s

)
,

which is equivalent to

(r(t)y∆(t))∆ + (βrσ(t)− r∆(t))y∆(t) =

= B(t)rσ(t)y(t) + rσ(t)H∆

(
t, y(t),

∫ t

−∞
J (t− s)H(s, y(s))∆s

)
.

(4)

We study oscillation criteria of (4). A non-trivial y(t) such that y(t) ∈ C∆
rd([ty,∞)T),

r(t)y∆(t) ∈ C∆
rd([ty,∞)T) for certain ty ≥ t1 and satisfying (4) for ty ≤ t is called non-

oscillatory if it is eventually positive or eventually negative, otherwise it is called oscillatory.
In other words, it is said to be oscillatory if it has an arbitrarily large number of zeros, i.e.,
there exists a sequence {sn} such that lim

n→∞
sn = ∞ as well as y(sn) = 0, ∀n. A dynamic

equation is called oscillatory if every solution is oscillatory, and non-oscillatory otherwise.
Our attention is restricted to those solutions of (4) which exist on some [ty,∞)T and satisfy
sup{|y(t)| : t > t∗} > 0 for any ty ≤ t∗.

In the past few years, there have been many research activities concerning the
oscillation of solutions of various forced second-order dynamic equations on time scales.
The oscillation criteria of the second order linear and non-linear dynamic equations on
time scales have been studied by many researchers, and we have plenty of essential papers,
articles etc. [9�14]. In particular: In (2003), Erbe, et. al. [13] considered linear damped
dynamic equation

x∆∆(t) + p(t)x∆(t) + q(t)x(t) = 0,

and non-linear equation

x∆∆(t) + p(t)x∆σ
(t) + q(t)(foxσ)(t) = 0, (5)
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to establish the oscillation criteria. In (2007), Saker, et. al. [14] gerneralized (5) as follows:(
r(t)x∆(t)

)∆
+ p(t)x∆σ

(t) + q(t)(foxσ)(t) = 0, (6)

and studied an oscillation criteria. Finally, in (2008), Erbe, et. al. [15] have considered a
non-linear damped delay dynamic equation by introducing a constant term β, where β is
a quotient of odd positive integers and studied the su�cient conditions for oscillation:(

r(t)(x∆(t))β
)∆

+ p(t)(x∆σ
(t))β + q(t)f(x(τ(t))) = 0, (7)

which extend and improve the results [13,14].
In (2004), Bohner, et. al. [10] considered a second-order perturbed dynamic equation:(

r(t)(x∆(t))γ
)∆

+ F (t, xσ(t)) = G(t, x(t), x∆(t)), (8)

where γ is a positive odd integer. In (2006), Agarwal, et. al. [9] modi�ed equation (8)(
r(t)(x∆(t))γ

)∆
+ F (t, x(t))︸ ︷︷ ︸ = G(t, x(t), x∆(t)),

and both have established the su�cient conditions for oscillation. In (2010), Chen, et.
al. [11] considered a dynamic equation with damping on time scale

((x∆(t))γ)∆ + p(t)(x∆(t))γ + q(t)f(x(σ(t)) = 0,

and studied the oscillation criteria as well as established the Kamenev type and the Philos-
type oscillation criteria of it. Throughout this paper we denote [a,∞)∩T = [a,∞)T, where
sup(T) = ∞.

This paper is organized as follows: In this section, we establish some necessary Lemmas.
In the next section, we use Riccati transformation technique to establish the su�cient
conditions for oscillation of (4) and also establish the Kamenev type oscillation criteria.
Finally, we consider another second order dynamic equation with deviating argument and
establish the same for oscillation.

It will be convenient to make the following notations:

Q(t) =
βrσ(t)− r∆(t)

r(t)
, D(t, s∗) = e Q(t)

1−µ(t)Q(t)

(t, s∗), M(t) = (p(t)−B(t))rσ(t),

B1(t) =
(δ∆(t)− δσ(t)Q(t)ð(t))

δ(t)
, B2(t) =

δσ(t)ð(t)
δ2(t)r(t)

, A2(t) =

(
Dσ(t, s∗)δ(t)

r(t)(δσ(t))2D(t, s∗)

)
,

A1 =

(
δ∆(t)

δσ(t)
− Dσ(t, s∗)δ(t)

D(t, s∗)δσ(t)
Q(t)

)
.

To establish our results we use the following assumptions:

(U1) B : [t1,∞)T → R is a negative rd-continuous function and p : [t1,∞)T → R
is a positive rd-continuous function;

(U2) B : [t1,∞)T → R is an rd-continuous function and p : [t1,∞)T → R is a positive
rd-continuous function such that p(t)−B(t) > 0;
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(U3) Q : [t1,∞)T → R is a positive rd-continuous function such that 1 − µ(t)Q(t) > 0,
and r(t) ∈ +C∆

rd(T);

(U4) H : T × R2 is a ∆-derivative �nction (w.r.t �rst variable) such that
η(t)H∆(t, η(t), ξ(t)) < 0, ∀η(t) ∈ R v {0}, ∀ξ(t) ∈ R, ∀t ∈ T;

(U5) |H∆(t, η(t), ξ(t))| ≥ p(t)|η(t)|, ∀η(t) ∈ R v {0}, ∀ξ(t) ∈ R, t ∈ T;

(U6)

∫ ∞

t1

1

r(t)
e−Q(t)(t, s

∗)∆ t = ∞.

Now we establish two Lemmas, which will be used in the next section.

Lemma 1. Let y(t) be an eventually positive solution of (4). Assume that (U3) − (U6)
and either (U1) or (U2) holds. Then there exists s∗ > t1 such that

y(t) > 0, y∆(t) > 0 and
(
D(t, s∗)r(t)y∆(t)

)∆
< 0 ∀s∗ ≤ t. (9)

Proof. Since y(t) is an eventually positive solution of (4). Take t2 ∈ [t1,∞)T such that
y(t) > 0 on [t2,∞)T. In view of equation (4) and (U1)− (U5), we have

(r(t)y∆(t))∆ +Q(t)r(t)y∆(t) ≤ −(p(t)−B(t))rσ(t)y(t) = −M(t)y(t) < 0 (10)

on [t2,∞)T. Now, by dividing equation (10) by a non-negative function 1 − µ(t)Q(t), we
get

(r(t)y∆(t))∆

1− µ(t)Q(t)
+

Q(t)

1− µ(t)Q(t)
r(t)y∆(t) < 0

or (
D(t, s∗)r(t)y∆(t)

)∆
< 0.

Then D(t, s∗)r(t)y∆(t) is an eventually decreasing function and thus it is eventually
of one sign, i.e. it is either eventually positive or eventually negative. We assert that
D(t, s∗)r(t)y∆(t) is eventually non-negative. Suppose it is eventually negative, then there
exist t3 ≥ t2 and a constant K1 < 0 such that

D(t, s∗)r(t)y∆(t) ≤ K1 < 0.

Integrating the above relation from t3 to t, we obtain

y(t) ≤ y(t3) +K1

∫ t

t3

1

r(x)D(x, s∗)
∆x =

= y(t3) +K1

∫ t

t3

1

r(x)
e−Q(x)(x, s

∗)∆x → −∞ as t → ∞,

which is a contradiction since y(t) > 0 for all t2 ≤ t. Hence, D(t, s∗)r(t)y∆(t) is eventually
non-negative, i.e., y∆(t) is eventually positive function or there exists s∗ ∈ T such that
y∆(t) > 0 for all t ∈ [s∗,∞)T.
Thus, we have

y(t) > 0, y∆(t) > 0 and
(
D(t, s∗)r(t)y∆(t)

)∆
< 0, ∀s∗ ≤ t.

2
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Lemma 2. Let Lemma 1 hold. Futhermore, assume r∆(t) ≥ 0. Then

ð(t) <
y(t)

yσ(t)
< 1, (11)

where ð(t) = t−s∗

t−s∗+µ(t)
.

Proof. From (9), we obtain

y(t) > 0, y∆(t) > 0, y∆∆(t) < 0. (12)

Also from (12), we have

y(t) = y(t)− y(s∗) =

∫ t

s∗
y∆(η)∆η > y∆(t)(t− s∗). (13)

From (13) and yσ(t) = y(t) + µ(t)y∆(t), we get

ð(t) ≤ y(t)

yσ(t)
≤ 1. (14)

2

1. Main Results

In this section, we give some new oscillation criteria for equation (4).

Theorem 5. Assume that (U3)− (U6) and either (U1) or (U2) hold. Furthermore, there
exists δ(t) ∈ +C∆

rd(T)(not necessary rd-continuity of δ∆) such that for all su�ciently large
s∗,

lim sup
t→∞

∫ t

s∗

[
M(ξ)δ(ξ)− A2

1(ξ)

4A2(ξ)

]
∆ ξ = ∞ (15)

or

lim sup
t→∞

∫ t

s∗

[
M(ξ)δ(ξ)−

r(ξ)
(
δ∆(ξ)− δ(ξ)Q(ξ)

)2
4δ(ξ)

]
∆ ξ = ∞. (16)

Then, every solution of equation (4) is oscillatory.

Proof. Suppose to the contrary that y(t) is a non-oscillatory solution of equation (4). We
may assume without loss of generality that y(t) is eventually positive. By Lemma 1, we
have

y(t) > 0, y∆(t) > 0 and
(
D(t, s∗)r(t)y∆(t)

)∆
< 0 ∀s∗ ≤ t.

Now de�ne a function w(t) by the Riccati substitution

w(t) = δ(t)
r(t)y∆(t)

y(t)
, t ≥ s∗ ≥ t1. (17)

Then, w(t) > 0 and

w∆(t) =

(
δ(t)

r(t)y∆(t)

y(t)

)∆

= (r(t)y∆(t))σ
(
δ(t)

y(t)

)∆

+ (r(t)y∆(t))∆
(
δ(t)

y(t)

)
.

From (17), we have

w∆(t) =
wσ(t)

δσ(t)

(
δ∆(t)− δ(t)y∆(t)

y(t)

)
+ (r(t)y∆(t))∆

(
δ(t)

y(t)

)
.
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From (10) and (17), we obtain

w∆(t) ≤ wσ(t)

δσ(t)

(
δ∆(t)− δ(t)y∆(t)

y(t)

)
−

(
M(t)y(t) +Q(t)(r(t)y∆(t))

)(δ(t)

y(t)

)
=

= −M(t)δ(t)−Q(t)w(t) +
δ∆(t)wσ(t)

δσ(t)
− wσ(t)w(t)

r(t)δσ(t)
.

(18)

Since D(t, s∗)r(t)y∆(t) is eventually decreasing function, then

Dσ(t, s∗)(r(t)y∆(t))σ ≤ D(t, s∗)r(t)y∆(t), as t ≤ σ(t).

From (17), we obtain

w(t) ≥ Dσ(t, s∗)yσ(t)δ(t)wσ(t)

D(t, s∗)y(t)δσ(t)
. (19)

Also, since y(t) is eventually increasing function, then we get

y(t) ≤ yσ(t). (20)

From (19) and (20), we have

w(t) ≥ Dσ(t, s∗)δ(t)wσ(t)

D(t, s∗)δσ(t)

or

−Q(t)w(t) ≤ −Dσ(t, s∗)δ(t)wσ(t)

D(t, s∗)δσ(t)
Q(t). (21)

From (19) and (21), we obtain

w∆(t) ≤ −M(t)δ(t)− Dσ(t, s∗)δ(t)wσ(t)

D(t, s∗)δσ(t)
Q(t) +

δ∆(t)wσ(t)

δσ(t)
−

−(wσ(t))2Dσ(t, s∗)δ(t)

r(t)D(t, s∗)(δσ(t))2
= −M(t)δ(t) + A1(t)w

σ(t)− (wσ(t))2A2(t) =

= −M(t)δ(t)−
[
wσ(t)

√
A2(t)− A1(t)

2
√

A2(t)

]2
+

A2
1(t)

4A2(t)
.

(22)

Hence

w∆(t) ≤ −
[
M(t)δ(t)− A2

1(t)

4A2(t)

]
. (23)

Integrating (23) from s∗ to t, we obtain∫ t

s∗

[
M(ξ)δ(ξ)− A2

1(ξ)

4A2(ξ)

]
∆ ξ ≤ w(s∗)− w(t) ≤ w(s∗) < ∞, (24)

for all large t. Which is a contradiction because of relation (15). Hence, the proof is
complete due to asumption (15).

42 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 1, pp. 35�47



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

Now we prove the result using (16). From equations (19), (20) and Dσ(t, s∗) ≥ D(t, s∗),
we obtain

w(t) ≥ δ(t)wσ(t)

δσ(t)
. (25)

Similarly, from (23) and (25), we obtain[
M(ξ)δ(ξ)−

r(ξ)
(
δ∆(ξ)− δ(ξ)Q(ξ)

)2
4δ(ξ)

]
≤ −w∆(t). (26)

Integrating equation (16) from s∗ to t, we get∫ t

s∗

[
M(ξ)δ(ξ)−

r(ξ)
(
δ∆(ξ)− δ(ξ)Q(ξ)

)2
4δ(ξ)

]
∆ ξ ≤ w(s∗)− w(t) ≤ w(s∗) < ∞, (27)

for su�ciently large t, which is a contradiction as (16) holds. Hence, the proof is complete
due to assumption (16). Thus, the whole proof is complete.

2
As an immediate consequence of Theorem (5), we have the following corollaries for

di�erent values of δ(t).
For δ(t) = constant (say, C > 0), t ≥ t1, we have the following result.

Corollary 1. Assume that (U3)−(U6) and either (U1) or (U2) hold. Furthermore, assume

lim sup
t→∞

∫ t

s∗

[
M(ξ)− r(ξ)Dσ(ξ, s∗)Q2(ξ)

4D(ξ, s∗)

]
∆ ξ = ∞

or

lim sup
t→∞

∫ t

s∗

[
M(ξ)− r(ξ)Q2(ξ)

4

]
∆ ξ = ∞.

Then, every solution of equation (4) is oscillatory.

For δ(t) = t2, we have following result.

Corollary 2. Assume that (U3)− (U6) and either (U1) or (U2) hold. Furthermore, assume

lim sup
t→∞

∫ t

s∗

M(ξ)ξ2 −

(
(ξ+σ(ξ))
(σ(ξ))2

− Dσ(ξ, s∗)ξ2

D(ξ, s∗)(σ(ξ))2
Q(ξ)

)2

(
4Dσ(ξ, s∗)ξ2

r(ξ)(σ(ξ))4D(ξ, s∗)

)
∆ ξ = ∞

or

lim sup
t→∞

∫ t

s∗

[
M(ξ)ξ2 − r(ξ) (ξ + σ(ξ)− ξ2Q(ξ))

2

4ξ2

]
∆ ξ = ∞.

Then, every solution of equation (4) is oscillatory.

We add one more condition, i.e. r∆(t) ≥ 0 or r(t) ∈ +C∆+
rd (T) in Theorem (5) to

obtain some new oscillation criteria of equation (4).
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Theorem 6. Assume that (U3)− (U6) and either (U1) or (U2) hold. Moreover, r∆(t) ≥ 0
or r(t) ∈ +C∆+

rd (T) and there exists δ(t) ∈ +C∆
rd(T)(not necessary rd-continuity of δ∆)

such that for all su�ciently large s∗,

lim sup
t→∞

∫ t

s∗

[
M(ξ)δσ(ξ)ð(ξ)− B2

1(ξ)

4B2(ξ)

]
∆ ξ = ∞. (28)

Then, every solution of equation (4) is oscillatory.

Proof. In view of Theorem (5) and equation (17), we obtain

w∆(t) = δ∆(t)

(
r(t)y∆(t)

y(t)

)
+ δσ(t)

(
r(t)y∆(t)

y(t)

)∆

.

By using equation (10), Lemma 2 and after manipulation, we obtain

w∆(t) ≤ −M(t)δσ(t)ð(t) + B1(t)w(t)−B2(t)w
2(t),

which is equivalent to

w∆(t) ≤ −M(t)δσ(t)ð(t)−

[
w(t)

√
B2(t)−

B1(t)

2
√
B2(t)

]2

+
B2

1(t)

4B2(t)
.

Integrating the above equation from s∗ to t, we obtain∫ t

s∗

[
M(ξ)δσ(ξ)ð(ξ)− B2

1(ξ)

4B2(ξ)

]
∆ ξ ≤ w(s∗)− w(t) ≤ w(s∗) < ∞, (29)

for all large t, which is a contradiction due to (28). Hence, the proof is complete.

2
Now as a special case if δ(t) is positive constant, we obtain a result:

Corollary 3. Assume that (U3)−(U6) and either (U1) or (U2) hold. Moreover, r∆(t) ≥ 0
or r(t) ∈ +C∆+

rd (T) and

lim sup
t→∞

∫ t

s∗
ð(t)

[
M(ξ)− r(ξ)Q2(ξ)

4

]
∆ ξ = ∞. (30)

Then, every solution of equation (4) is oscillatory.

Now we establish Kamenev-type oscillation criteria for (4). We need the following
result of [16] ((t− s)m)∆s ≤ −m(t− σ(s))m−1 ≤ 0 for m > 1 and σ(s) ≤ t to establish our
results.

Theorem 7. Assume that (U3)− (U6) and either (U1) or (U2) holds. Furthermore, there
exists δ(t) ∈ +C∆

rd(T)(not necessary rd-continuity of δ∆) such that for ℵ > 1 and for all
su�ciently large s∗,

lim sup
t→∞

1

tℵ

∫ t

s∗
(t− ξ)ℵ

[
M(ξ)δ(ξ)− A2

1(ξ)

4A2(ξ)

]
∆ ξ = ∞ (31)

or
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lim sup
t→∞

1

tℵ

∫ t

s∗
(t− ξ)ℵ

[
M(ξ)δ(ξ)−

r(ξ)
(
δ∆(ξ)− δ(ξ)Q(ξ)

)2
4δ(ξ)

]
∆ ξ = ∞. (32)

Then, every solution of (4) is oscillatory.

Proof. In view of Theorem 5, from (23), we have

w∆(t) ≤ −
[
M(t)δ(t)− A2

1(t)

4A2(t)

]
.

Thus ∫ t

s∗
(t− ξ)ℵw∆(ξ)∆ ξ ≤ −

∫ t

s∗
(t− ξ)ℵ

[
M(ξ)δ(ξ)− A2

1(ξ)

4A2(ξ)

]
∆ ξ. (33)

We know∫ t

s∗
(t− ξ)ℵw∆(ξ)∆ ξ = −(t− s∗)ℵw(s∗)−

∫ t

s∗

(
(t− ξ)ℵ

)∆ξ w(σ(ξ))∆ ξ, (34)

and using the remark (3.3) in [16], we have(
(t− ξ)ℵ

)∆ξ ≤ −ℵ(t− σ(ξ))ℵ−1 ≤ 0, σ(ξ) ≤ t and ℵ > 1. (35)

From equations (33), (34) and (35), we obtain

−
∫ t

s∗
(t− ξ)ℵ

[
M(ξ)δ(ξ)− A2

1(ξ)

4A2(ξ)

]
∆ ξ ≥

∫ t

s∗
(t− ξ)ℵw∆(ξ)∆ ξ = −(t− s∗)ℵw(s∗)−

−
∫ t

s∗

(
(t− ξ)ℵ

)∆ξ w(σ(ξ))∆ ξ ≥ −(t− s∗)ℵw(s∗),

or ∫ t

s∗
(t− ξ)ℵ

[
M(ξ)δ(ξ)− A2

1(ξ)

4A2(ξ)

]
∆ ξ ≤ (t− s∗)ℵw(s∗).

Thus

lim sup
t→∞

1

tℵ

∫ t

s∗
(t− ξ)ℵ

[
M(ξ)δ(ξ)− A2

1(ξ)

4A2(ξ)

]
∆ ξ ≤ lim sup

t→∞

(
1− s∗

t

)ℵ

w(s∗) < ∞.

Which contradicts assumption (31). To prove the result using (32), we apply the above
process for equation (26), then we get a contradiction since we have (32). Hence, the proof
is complete.

2
Theorem 8. Assume that (U3) − (U6) and either (U1) or (U2) holds. Moreover, either
r∆(t) ≥ 0 or r(t) ∈ +C∆+

rd (T) and there exists δ(t) ∈ +C∆
rd(T)(not necessary rd-continuity

of δ∆) such that for ℵ > 1 and for all su�ciently large s∗,

lim sup
t→∞

1

tℵ

∫ t

s∗
(t− ξ)ℵ

[
M(ξ)δσ(ξ)ð(ξ)− B2

1(ξ)

4B2(ξ)

]
∆ ξ = ∞. (36)

Then, every solution of equation (4) is oscillatory.

Proof of the above Theorem is same as proof of Theorem 8.
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Remark 2. The result of Theorem 8 and Theorem 9 holds for any δ(t) ∈ +C∆
rd(T)

(not necessary rd-continuity of δ∆). Thus, by these Theorems, we can immediately obtain
corollaries with di�erent choice of δ(t).

Let us consider a second order non-linear dynamic equation with deviating argument
on an arbitrary time scale T :

y∆∆(t) + βy∆(t) = B(t)y(t) +W∆(t, y(t), y(w1(t, y(t)))), (37)

where β ≥ 0, w1(t, y(t)) = b1(t, y(b2(t, · · · , y(bm0(t, y(t))) · · · ))), B is a function of t, and
the forcing terms W and bi, i = 1, 2, · · · ,m0.

Remark 3. If we replace the integro forcing term H

(
t, y(t),

∫ t

−∞
J (t− s)H(s, y(s))∆ s

)
(in 3) by the deviating argument W(t, y(t), y(w1(t, y(t)))) (in 37), then in the similar
manner we can obtain oscillation criteria of (37). Thus, all the above Theorems and
corollaries can be achieved for the second order dynamic equation (37), i.e., all the results
will remain the same for it.
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ÊÐÈÒÅÐÈÈ ÊÎËÅÁÀÍÈÉ ÍÅËÈÍÅÉÍÛÕ
ÄÈÍÀÌÈ×ÅÑÊÈÕ ÓÐÀÂÍÅÍÈÉ ÂÒÎÐÎÃÎ ÏÎÐßÄÊÀ
Ñ ÈÍÒÅÃÐÀËÜÍÎÉ ÑÎÑÒÀÂËßÞÙÅÉ ÍÀ ÂÐÅÌÅÍÍÛÕ
ÌÀÑØÒÀÁÀÕ

Ø.Ñ. Íåãè, Ñ. Àááàñ, Ì. Ìàëèê

Â ñòàòüå ðàññìàòðèâàþòñÿ êîëåáàòåëüíûå ñâîéñòâà íåëèíåéíîãî äèíàìè÷åñêîãî

óðàâíåíèÿ âòîðîãî ïîðÿäêà ñ èíòåãðàëüíîé ñîñòàâëÿþùåé íà ïðîèçâîëüíîì ïðîìåæóò-

êå âðåìåíè. Ïðè ïîìîùè ââåäåíèÿ îïåðàòîðà ñäâèãà èñõîäíîå äèíàìè÷åñêîå óðàâíåíèå

ðåäóöèðóåòñÿ ê àëüòåðíàòèâíîìó óðàâíåíèþ. Äëÿ èçó÷åíèÿ êîëåáàíèé ìû ïðåäñòàâèì

íåêîòîðûå âàæíûå ëåììû è áóäåì èñïîëüçîâàòü îáîáùåííîå ïðåîáðàçîâàíèå Ðèêêàòè,

êîòîðîå ïåðåâîäèò äèíàìè÷åñêîå óðàâíåíèå âòîðîãî ïîðÿäêà â äèíàìè÷åñêîå óðàâíåíèå

ïåðâîãî ïîðÿäêå íà ïðîèçâîëüíîì ïðîìåæóòêå âðåìåíè. Ïîëó÷åííûå ðåçóëüòàòû òàêæå

ãàðàíòèðóþò, ÷òî ðåøåíèå èñõîäíîãî óðàâíåíèÿ îñöèëëèðóåò. Êðîìå òîãî, ìû óñòàíàâ-

ëèâàåì êðèòåðèé êîëåáàíèé Êàìåíåâà äëÿ íàøåé ñèñòåìû. Â èòîãå, ìû ðàññìîòðèì

äèíàìè÷åñêîå óðàâíåíèå âòîðîãî ïîðÿäêà íà âðåìåííûõ ìàñøòàáàõ ñ îòêëîíÿþùèì-

ñÿ àðãóìåíòîì è ñðàâíèì åãî ñ ðåçóëüòàòîì, êîòîðûé äàåò äîñòàòî÷íûå óñëîâèÿ åãî

êîëåáàíèÿ.

Êëþ÷åâûå ñëîâà: ìàñøòàá âðåìåíè; äèíàìè÷åñêèå óðàâíåíèÿ; ïðåîáðàçîâàíèå

Ðèêêàòè; êîëåáàíèå.
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