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This paper is concerned with the oscillatory properties of second order non-linear
dynamic equation with integro forcing term on an arbitrary time scales. We reduce
our original dynamic equation into an alternate equation by introducing a function of
forward jump operator. To study oscillations we establish some crucial Lemmas and employ
generalized Riccati transformation technique which transforms our second order dynamic
equation into the first order dynamic equation on an arbitrary time scales. These results
also guarantee that the solution of our equation oscillates. Furthermore, we establish the
Kamenev-type oscillation criteria of our system. At the end, we consider a second order
dynamic equation on time scales with deviating argument and compare it with our result
which gives the sufficient conditions of oscillation of it.
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Introduction and Preliminaries

The oscillation theory of differential equation and difference equation has been
receiving a lot of attention in the past few decades. It is a very important concept in the
qualitative behaviour of the solutions of both types of equations. Many researchers have
taken an interest in studying the oscillation and non-oscillation criteria of the solution of
both differential and difference equations [1-3]. The problem of obtaining the sufficient
conditions for oscillation of both types of equations takes much time. Therefore, it is
necessary to find a single way for both equations.

The time scale theory which removes this ambiguity has been first introduced by a
German mathematician Stefan Hilger in his Ph.D. dissertation (1988) [4]. The significance
of this theory is that it does not only avoid the dual analysis but also harmonize both
continuous and discrete calculus.

Time scale is a non-empty closed subset of the real numbers (i.e., R), e.g., set of
natural numbers (N), integers (Z), Cantor set, set of harmonic numbers etc. In this way,
the results do not only relate to the set of real numbers or set of integers but also
pertain to more general times scales. The three most popular examples of calculus on
time scales are differential calculus (T = R), difference calculus (T = Z), and quantum
calculus (T = ¢ J{0},¢ > 1), for more details see [5,6] and references therein. It has
many applications in various fields, e.g., population dynamics, economics, neural networks,
quantum physics and social science etc. |7, 8].

We briefly recall some basic definitions, useful Theorems, LLemmas, assumptions and
basic facts of time scales etc.
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Definition 1. [5,6] For t € T, we define a forward jump operator o : T — T by
o(t) .= inf{s € T : s > t}, ift < o(t) andt < supT as well as t = o(t), then t
s right-scattered and right dense respectively. A backward jump operator p : T — T by
p(t) :=sup{s € T : s < t}, if t > p(t) and t > infT as well as t = p(t), then t is
left-scattered and left dense respectively. The graininess operator j: T — [0,00) is defined
by u(t) = o(t) —t.

Remark 1. We put inf¢ = supT (i.e., o(t) = t if T has a maximum t), sup¢ = inf T
(i.e., p(t) =t if T has a minimum t).

Definition 2. [5,6] A function f: T — R is called rd-continuous provided it is continuous
at all right-dense pomts in T and its left-sided limit exists (finite) at left-dense points in

T, denoted by Crq = Crq(T) = Crq(T,R). We define some notations as follows:
+CL(T {q q t) is posmve rd-continuous function and ¢*(t) € Crd(T>} .
+(CA+ = {q: q(t),¢"*(t) are positive rd-continuous functions} .

Definition 3. [5,6] A function G : T — R is called an anti-derivative of g : T — R,
provided G2 (t) = g(t)Vt € T. Then Va,b € T, the Cauchy integral is defined by

b
| 96:18) = 60) - 6ta).

Define
T _ { T — {i}, if T has a left-scattered maximum I,

T* =T, otherwise.

Definition 4. [5,6] For a function f : T — R and t € T*, we define f2(t), to be a number
(provided it exists) with the property that given any € > 0, there exists a neighborhood
A= (t—=0,t+5) T for some d >0 such that

|[F(o(t) = f(r)] = F2O)]o(t) = 7]| < ela(t) —r| Vre A
Thus, we call f2(t) the delta or Hilger derivative of f at t. f is also called differentiable
at t.
Theorem 1. [5,6| For the functions g, f : T — R and t € T", we have the following:
1. If f is differentiable at t, then f is continuous at t;

2. If f is continuous at t and t is right-scattered, then f has a delta derivative at t and

flo(t) = f(#).

fA) = :

="

3. If t 1s right-dense, then f is differentiable at t if the limit
50 i O =10

s—t t—s
exists and has a finite value;
4. If f is differentiable at t, then

f7=flo(t) = f(t) + u®) 2 ()

36 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 1, pp. 35—47



MATEMATNYECKOE MOJIE/INPOBAHUE

5. If f and g both are differentiable at t, then the product fg: T — R is differentiable
at t and

(f9)2(t) = [2(0)g(t) + f(a()g>(t) = f(H)g™(t) + f2(t)g(o(t));

6. If g(t)g(o(t)) # 0 with g(t) # 0, then L2 t is differentiable at t and

N PO - g0
(9) 0= et

Definition 5. [5,6] A function q : T — R is called regressive if 1 + u(t)q(t) # 0, Vt € T.
We denote the collections of all functions h : T — R which are rd-continuous and regressive
by R and RT ={q € R: 1+ u(t)p(t) >0 for all t € T}.

Definition 6. [5,6] (Time scale version of exponential function). If ¢ € R, then we define
the exponential function by

t
eq(t,s) = exp (/ Nuery (q(7)) AT) , VteT, seT",
where np(z) is the cylinder transformation, which is defined by

log (14+hz) T 0
ICE A A

Definition 7. [5,6] If ¢ € R, then the first order linear dynamic equation

y>(t) = q(t)y(t) (1)

15 called regressive.

Theorem 2. [5,6] Suppose that (1) is regressive and fix to € T. Then ey(.,to) is a solution
of the initial value problem

y2 (1) = a(t)y(t), y(to) =1 (2)
on T.
Theorem 3. [5,6] If (1) is regressive, then e,(.,to) is the only solution of (2).
Theorem 4. [5,6| If p,q € R, then
1. eo(t,s) =1 and ey(t,t) = 1,
2. e(0(t),5) = (1+ p(Op(E)e(t, o)
3. eoplt,s) = ——;

ep(t,)

4. ep(t,s)eq(t,s) = epaq(t, 5);
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A
1 _ __p@®) .
2 (ep(.,s)) T eg(8)?
6. If g € R™, then e,(t,s) >0 for all t € T.

In this paper, we study the oscillation criteria of the second order non-linear dynamic
equation with integro forcing term on time scale T:

yoA () + By (8) = B(ty(t) + H* (ty(t% /_t J(t = s)H(s,y(s))A 8) : (3)

where B, J : T — R are the function of ¢, and the forcing terms H : T x R? — R and
H : T x R — R. For the alternate form of equation (3), we multiply (3) by a function
r?(t). We have

P (5P (1) 4607 () (1) = v (1) B(e)y ()47 (1) I (t,y@), | ae- s)%(s,y<s>>As) |
From above relation, we obtain

POy (1) + 2 )y () —rB (yA (1) + Bro )y (t) =

-~

— (O B@Y(E) + 1 (1) (t, oo [ - s)%(s,y<s>>As) |

which is equivalent to

(r(y () + (817 (6) = rA () (1) =
= B(t)ro (t)y(t) +ro(t)H* (t,y(t), /_ Tt — s)H(s, y(s)) As) . (4)

We study oscillation criteria of (4). A non-trivial y(¢) such that y(t) € C2([ty,o0)1),
r(t)y>(t) € C&([ty,00)r) for certain t, > t; and satisfying (4) for ¢, < t is called non-
oscillatory if it is eventually positive or eventually negative, otherwise it is called oscillatory.
In other words, it is said to be oscillatory if it has an arbitrarily large number of zeros, i.e.,
there exists a sequence {s,} such that lim s, = oo as well as y(s,) = 0, Vn. A dynamic

n—oo
equation is called oscillatory if every solution is oscillatory, and non-oscillatory otherwise.

Our attention is restricted to those solutions of (4) which exist on some [t,, co)r and satisfy
sup{|y(t)| : t > t.} > 0 for any ¢, < ..

In the past few years, there have been many research activities concerning the
oscillation of solutions of various forced second-order dynamic equations on time scales.
The oscillation criteria of the second order linear and non-linear dynamic equations on
time scales have been studied by many researchers, and we have plenty of essential papers,
articles etc. [9-14]. In particular: In (2003), Erbe, et. al. [13] considered linear damped
dynamic equation

222 (t) + p(t)a® () + q(t)z(t) = 0,

and non-linear equation

222 (t) + p(t)a>’ (t) + q(t)(fox”)(t) = 0, (5)

38 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 1, pp. 35—47




MATEMATNYECKOE MOJIE/INPOBAHUE

to establish the oscillation criteria. In (2007), Saker, et. al. [14] gerneralized (5) as follows:

(rHz(®) + p(t)x™7 (1) + q()(foa")(t) = 0, (6)

and studied an oscillation criteria. Finally, in (2008), Erbe, et. al. [15] have considered a
non-linear damped delay dynamic equation by introducing a constant term [, where [ is
a quotient of odd positive integers and studied the sufficient conditions for oscillation:

(r()(@*(#)%) + p(t) (@27 ()" + q(B) f(@(r (1)) = 0, (7)

which extend and improve the results [13,14].
In (2004), Bohner, et. al. [10] considered a second-order perturbed dynamic equation:

A g
(r()(@(1)7)" + E(t,2°(1) = G(t, (1), 2(t)), (8)
where v is a positive odd integer. In (2006), Agarwal, et. al. [9] modified equation (8)

(r()@>O)) + F(t, 2(0) = Glt, 2(), 25(1))
——
and both have established the sufficient conditions for oscillation. In (2010), Chen, et.
al. [11] considered a dynamic equation with damping on time scale

((@2())> +p() (@) + a(t)f (x(o(t) = 0,

and studied the oscillation criteria as well as established the Kamenev type and the Philos-
type oscillation criteria of it. Throughout this paper we denote [a, 00) T = [a, 00)T, where
sup(T) = oo.

This paper is organized as follows: In this section, we establish some necessary Lemmas.
In the next section, we use Riccati transformation technique to establish the sufficient
conditions for oscillation of (4) and also establish the Kamenev type oscillation criteria.
Finally, we consider another second order dynamic equation with deviating argument and
establish the same for oscillation.

It will be convenient to make the following notations:

pro(t) —r(t)

Q(t) = , D(t,s") =e_ow (t,57), M(t) = (p(t) — B(t))r”(t),

r(t) T—H(OQM
N0 TOeWAN) L TWA0 (D))
il = 300 0= 40 = (Fare )

_(6%(t)  Do(t,s%)6(t)
&‘<w@‘0wﬁwa®)

To establish our results we use the following assumptions:

(Uy) B :[ti1,00)r — R is a negative rd-continuous function and p : [t1, 00)r — R
is a positive rd-continuous function;

(Uz) B : [t1,00)r — R is an rd-continuous function and p : [t;,00)r — R is a positive
rd-continuous function such that p(t) — B(t) > 0;

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 39
u nporpammupoBanues (Bectunk FOYpI'Y MMII). 2017. T. 10, Ne 1. C. 3547



S.S. Negi, S. Abbas, M. Malik

(Us) @ : [t1,00)r — R is a positive rd-continuous function such that 1 — u(¢)Q(t) > 0,
and 7(t) € TO2,4(T);

(Uy) H : T x R? is a A-derivative finction (w.r.t first variable) such that
BOHA(Ln(E),E0) <0, Vn(t) R {0}, Ve(t) ER, Wt eT:

(Us) [HA(t,n(t),50)] = p®)In(®)], n(t) e R~ {0}, V() €R, tET;
[e.e] 1 .
(Us) /t1 me_Q(t)(t,s JAt = oo.

Now we establish two Lemmas, which will be used in the next section.

Lemma 1. Let y(t) be an eventually positive solution of (4). Assume that (Us) — (Us)
and either (Uy) or (Usz) holds. Then there exists s* >ty such that

y(t) >0, y>(t)>0 and (D(t, s )r(y™(1)> <0 Vs <t. 9)

Proof. Since y(t) is an eventually positive solution of (4). Take ty € [t1,00)7 such that
y(t) > 0 on [tz,00)r. In view of equation (4) and (U;) — (Us), we have

(r(t)y> (1) + Q)r(t)y™(t) < —(p(t) — B(t))r’(t)y(t) = —M(t)y(t) <0 (10)
on [ty,00)r. Now, by dividing equation (10) by a non-negative function 1 — pu(t)Q(t), we

get
GO O) e O N
L=p®)Q(t) 1 - p(t)Q)

(D(t, s )r(t)y™ (1) < 0.

Then D(t,s*)r(t)y>(t) is an eventually decreasing function and thus it is eventually
of one sign, i.e. it is either eventually positive or eventually negative. We assert that
D(t,s*)r(t)y>(t) is eventually non-negative. Suppose it is eventually negative, then there
exist ¢35 > t9 and a constant K; < 0 such that

D(t,s")r(t)y*(t) < K; < 0.
Integrating the above relation from t3 to ¢, we obtain

y(t) Sy(t3)+K1/ T;Aa::

" 1153 (x)D($7S*)
:y(t3)+K1/

t3 T(x)
which is a contradiction since y(t) > 0 for all t, < ¢. Hence, D(t, s*)r(t)y>(t) is eventually
non-negative, i.e., y>(t) is eventually positive function or there exists s* € T such that
y2(t) > 0 for all t € [s*,00)r.

Thus, we have

e_Q)(r,8")Axr — —o0 ast — oo,

y(t) >0, y>(t) >0 and (D(t, s*)r(t)yA(t))A <0, Vs <t -
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Lemma 2. Let Lemma 1 hold. Futhermore, assume r>(t) > 0. Then

3(t) < yyg(g) <1, (11)
where 0(t) = ﬁ
Proof. From (9), we obtain
y(t) >0, y*(t) >0, y>2(t) <0. (12)
Also from (12), we have
o) =9t o) = [ A s> (0 - ). (13)

From (13) and y°(t) = y(t) + u(t)y>(t), we get

sy < W (14)

1. Main Results

In this section, we give some new oscillation criteria for equation (4).

Theorem 5. Assume that (Us) — (Us) and either (Uy) or (Us) hold. Furthermore, there
exists 0(t) € TCoy(T) (not necessary rd-continuity of 6 ) such that for all sufficiently large

*

S

lim sup / {M(£)5(£) - 41‘11412((2))] A§ =0 (15)
o | t r() (04(6) = 8(©Q©)°] +,
lim sup / [M(€)5(f) - 1000 Af = co. (16)

Then, every solution of equation (4) is oscillatory.

Proof. Suppose to the contrary that y(t) is a non-oscillatory solution of equation (4). We
may assume without loss of generality that y(¢) is eventually positive. By Lemma 1, we

have y(t) >0, y*(t) >0 and (D(t, s*)r(t)yA(t))A <0 Vs <t

Now define a function w(t) by the Riccati substitution
Hy~(t
wit) = o)W s sy (17)

y(t)
Then, w(t) > 0 and

wh(t) = (6@)M)A = o or (290) s oo (22).

y(t) y(t)

From (17), we have

w° A
W) = 50((;)) (‘5%) - M) + (r(t)y>(6)* (ﬁ) .

y(t) y(t)
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From (10) and (17), we obtain

w° A
w0 < 20 (520 - “%)(“) - (w0 + Q) (57 ) - »
= M) - Qeule) + P - T,
Since D(t,s*)r(t)y>(t) is eventually decreasing function, then
D71, ) (r(ty> (D)7 < D(t, sy (1), as ¢ < a(t)
From (17), we obtain
D7(t, s%)y” (1)d(H)w (1)
R NS WO IO (19)
Also, since y(t) is eventually increasing function, then we get
y(t) <y (1) (20)
From (19) and (20), we have
De(t, s*)d(t)w(t)
W) Z =5 0 @
~Qu) < -2 Do, 21)
From (19) and (21), we obtain
o(t g* w® A
wA(t) < —M(t)5(t) . D l()t&t 8)5)(;2 t)(t>Q(t) ) ((;fg(t) (t>
W (@)?D7 (58 e
DG e~ MO0+ A0 - P A = @)
= M50~ [0 VA - 0]+ A,
Hence
w0 < - [ - . 23
Integrating (23) from s* to ¢, we obtain
t Ai(§) . .
[ priose - S5 A < w) —wo < i) < 21

for all large t. Which is a contradiction because of relation (15). Hence, the proof is
complete due to asumption (15).

49 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 1, pp. 35—47



MATEMATNYECKOE MOJIE/INPOBAHUE

Now we prove the result using (16). From equations (19), (20) and D“(¢,s*) > D(t,s"),
we obtain

wlt) > 200 2
Similarly, from (23) and (25), we obtain
r(€) (5%(6) - 3(6)Q(9)”
[M(€)5(§) - e ] < —wh(). (26)

Integrating equation (16) from s* to ¢, we get

/f [M(E) (6 - "EL (02 ~5©)Q(0)

2

45() A <w(s™)—w(t) <w(s’) <oo, (27)

*

for sufficiently large ¢, which is a contradiction as (16) holds. Hence, the proof is complete
due to assumption (16). Thus, the whole proof is complete.
a
As an immediate consequence of Theorem (5), we have the following corollaries for
different values of ().
For §(t) = constant (say, C' > 0), t > t1, we have the following result.

Corollary 1. Assume that (Us) — (Us) and either (Uy) or (Us) hold. Furthermore, assume

i [ [0 - MR Ao
W i [ [ - HHE  ae oo

Then, every solution of equation (4) is oscillatory.
For §(t) = t?, we have following result.

Corollary 2. Assume that (Us) — (Us) and either (Uy) or (Us) hold. Furthermore, assume

(eroe)  D7(&,57)€ QQ@)Q

t (0(©)° o
hftliigp /* M(£)£2 . ( § 4%(5(;6 2*()525)) Af = 0
(7"(6)(0(6))413(5, 8*))
li?ligp /t [M(§)52 e 0(4?2_ L) A¢ = oo.

Then, every solution of equation (4) is oscillatory.

We add one more condition, i.e. 72(t) >0 or r(t) € *C%(T) in Theorem (5) to
obtain some new oscillation criteria of equation (4).
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Theorem 6. Assume that (Us) — (Us) and either (Uy) or (Uy) hold. Moreover, r(t) > 0

or r(t) € +tCH(T) and there exists 0(t) € +C2,(T) (not necessary rd-continuity of 0°)

such that for all sufficiently large s*,

B
4B5(§)

Then, every solution of equation (4) is oscillatory.

unlsul>jft[A4<5>6“(£>6<5>

t—o00 *

|ag=o (25)

Proof. In view of Theorem (5) and equation (17), we obtain
1y (1) r(ty (0"
wh(t) = 6 (t (T(— +07(t) [ ——2 ) .
0= AT
By using equation (10), Lemma 2 and after manipulation, we obtain
wi(t) < =M(1)8°(£)d(t) + Bi(t)w(t) — Ba(t)w?(t),

which is equivalent to

2

wA() < — M(£)67 (£)3(t) — [w(t) Balt) — QBl—Egzt) + 4%;3).
Integrating the above equation from s* to ¢, we obtain
t 7 - Bi(6) w(s") —w w(s") < 0o
[ Ppriow@se - grel] A< ) - u) < u) <. (29

for all large ¢, which is a contradiction due to (28). Hence, the proof is complete.

(I
Now as a special case if d(¢) is positive constant, we obtain a result:

Corollary 3. Assume that (Us)— (Us) and either (Uy) or (Us) hold. Moreover, r2(t) > 0
or r(t) € *C(T) and

lim sup /tﬁ(t) [M(f) _rOeE) A€ = oo. (30)

2
t—o0 4

*

Then, every solution of equation (4) is oscillatory.

Now we establish Kamenev-type oscillation criteria for (4). We need the following
result of [16] ((t —s)™)2 < —m(t —o(s))™ 1 <0 for m > 1 and o(s) < ¢ to establish our
results.

Theorem 7. Assume that (Us) — (Us) and either (Uy) or (Us) holds. Furthermore, there
exists 6(t) € TCo(T) (not necessary rd-continuity of 0°) such that for R > 1 and for all
sufficiently large s*,

imsup 5 [ 6-9 (@) - H] e (31)
t—oo (AN s* 4"42 (5)
or
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st [0 [M PRPRGIL (éiézg(f)Q(i)) Neee
Then, every solution of (4) is oscillatory.
Proof. In view of Theorem 5, from (23), we have
wi(t) < — [M(t)é(t) _ 422(8)}
Thus
' R, A Y PR AN
[e-erur©acs - [o-o [aese - i ac (33
We know
[ ut@ng =t - %) - [ (-9 ue@ae (30
and using the remark (3.3) in [16], we have
(L= N < =Rt — ()N <0, o(¢) <tand R > 1. (35)

From equations (33), (34) and (35), we obtain

-0 [M©5(0) - L] A > [L(t - M AOAE = —(t - 5 u(s) -

- [ (-9 wlo@)ag =~ - ()

Ag

or

[a-o preste - 28 ag< - ute)

Thus

t Az £\ N
imsup [ (- 9" (w900 - 21 A <tmsup (1-5) () <

Which contradicts assumption (31). To prove the result using (32), we apply the above
process for equation (26), then we get a contradiction since we have (32). Hence, the proof

is complete.
(I

Theorem 8. Assume that (Us) — (Us) and either (Uy) or (Us) holds. Moreover, either
r2(t) >0 orr(t) € TCL(T) and there exists 5(t) € +(CrAd(T) (not necessary rd-continuity
of 02 ) such that for X > 1 and for all sufficiently large s*,

_ Bi(©)
AB,(€)

A€ = . (36)

t—o00 *

limsupt%/t(t — o {M(ﬁ)é"(f)ﬁ(f)

Then, every solution of equation (4) is oscillatory.

Proof of the above Theorem is same as proof of Theorem 8.
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Remark 2. The result of Theorem 8 and Theorem 9 holds for any 6(t) € +C%(T)
(not necessary rd-continuity of §2). Thus, by these Theorems, we can immediately obtain
corollaries with different choice of ().

Let us consider a second order non-linear dynamic equation with deviating argument
on an arbitrary time scale T :

Y22 (1) + By (t) = B(t)y(t) + WA (t,y(t), y(wi(t, y(t)))), (37)

where 8> 0,wi(t,y(£)) = bi(t,y(ba(t, -+ ,y(bmo (£,y()) - -+))), B is a function of ¢, and
the forcing terms W and b;,¢ = 1,2, -, my.

t
Remark 3. If we replace the integro forcing term H (t, y(t), / J(t— s)H(s,y(s))A s)

(in 3) by the deviating argument W(t,y(t), y(wi(t,y(t)))) (in 37), then in the similar
manner we can obtain oscillation criteria of (37). Thus, all the above Theorems and
corollaries can be achieved for the second order dynamic equation (37), i.e., all the results
will remain the same for it.
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KPUTEPU KOJJEBAHUN HEJIMHEMHBIX
JIMHAMUNYECKINX YVPABHEHUI BTOPOI'O IIOPIAIKA

C UHTET'PAJIBHOM COCTABJILIOITIENI HA BPEMEHHBIX
MACIIITABAX

II1.C. Heeu, C. Abbac, M. Maaux

B crarpe paccmarpuBaroTCs KOJI€0ATENBHBIE CBOWCTBA HEJIMHEHHOTO JTHHAMUIECKOTO
YPaBHEHUS BTOPOTO MOPSAKA C HHTErPATBHOM COCTABIAIONIEH HA TPOU3BOJILHOM IPOMEYKYT-
ke Bpemenu. [Ipu oMOIIH BBEIEHHST OEPATOPA CABUTa HCXOTHOE NUHAMUYECKOE YPABHEHHUE
peayIupyercst K aJbTepHATUBHOMY ypaBHeHU0. st u3ydenns: kojaeOaHuii MbI TPEICTABUM
HEKOTOPBIE BaXKHbIE JJeMMBI U OyIeM HCIOIb30BaTh 0000menHOe TpeobpasoBanne Pukkarm,
KOTOPOE TIEPEBOINT JTUNHAMUYECKOE YPABHEHNE BTOPOTO MOPSIKA B TUHAMUYECKOE YDABHEHUE
MIEPBOrO TIOPSAJIKE HA TIPOU3BOIBHOM ITPOMEXKYTKe BpeMeHu. [Tosrydennbie pe3yibraThl TaKKe
TAPAHTUPYIOT, YTO PEIIEHNE NCXOAHOTO YPaBHEHUsT OCIuupyer. Kpome Toro, Mbl yCTaHAB-
JuBaeM Kpurepuil Komebanuit Kamenesa s Hameit cucreMmbl. B mrore, Mbl pacCMOTPUM
JIWHAMUYECKOE YPABHEHNE BTOPOTO MOPSIKA HA BPEMEHHBIX MACIITabaX € OTKJIOHSIOIHM-
Cs APIYMEHTOM W CPABHUM €ro ¢ Pe3yJbTaTOM, KOTOPbBIA JAeT JOCTATOYHBIE YCJIOBUS €r0
KoJIebaHus.

Karoueewe caosa: macwmad epemeny; dunamuveckue YpasHeHnus; npeobpazosanue

Puxxamu; xosebanue.
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