DOI QR코드

DOI QR Code

Effects of Pentanol on the Rheology of Lecithin/LiCl Oranogel

Lecithin/LiCl 유기젤의 펜탄올 영향에 대한 유변학적 연구

  • Kim, Min-Gook (Department of Chemical Engineering, The Kumoh National Institute of Technology) ;
  • Chu, Eun-Ae (Department of Chemical Engineering, The Kumoh National Institute of Technology) ;
  • Lee, Hee-Young (Department of Chemical Engineering, The Kumoh National Institute of Technology)
  • 김민국 (금오공과대학교 화학공학과) ;
  • 추은애 (금오공과대학교 화학공학과) ;
  • 이희영 (금오공과대학교 화학공학과)
  • Received : 2021.11.10
  • Accepted : 2021.11.19
  • Published : 2021.12.10

Abstract

Lecithin, a zwitterionic phospholipid, forms spherical reverse micelles in nonpolar organic solvents such as decane. The addition of monovalent ions like lithium chloride (LiCl) to lecithin organosols induces the transformation of organosols into organogels due to the entanglement of reverse cylindrical micelles. In this study, we investigate the effect of pentanol acting as co-surfactant on rheological properties of lecithin/LiCl mixtures. From rheological studies, we find that the viscosity and elastic property of organogels decreased upon the addition of pentanol to organogels. The decrease in viscosity and elastic property can be attributed to the shortening of reverse cylindrical micelles confirmed by small angle X-ray scattering (SAXS).

양친매성 인지질의 한 종류인 레시틴은 데케인과 같은 비극성 유기용매상에서 구형의 역마이셀을 형성한다. 염화리튬과 같은 이온이 레시틴용액에 첨가될 때, 유기졸이 역실린더형 마이셀의 얽힘으로 인해 유기젤로 변환하게 된다. 이번 연구에서, 우리는 레시틴과 염화리튬 혼합물의 유변학적 성질에 대한 보조계면활성제로서의 펜탄올 효과를 연구하고자 한다. 유변학 연구를 통해, 유기젤에 펜탄올이 첨가될 때, 유기젤의 점도와 탄성 성질이 감소하였다. 이러한 감소는 역실린더 마이셀의 길이의 감소가 그 원인이며, 엑스선 소각 산란분석기를 통해 이를 확인하였다.

Keywords

Acknowledgement

This paper was supported by Kumoh National Institute of Technology.

References

  1. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, San Diego, CA, USA (1991).
  2. D. F. Evans and H. Wennerstrom, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, Wiley-VCH, New York (2001).
  3. D. M. Willard, R. E. Riter, and N. E. Levinger, Dynamics of polar solvation in lecithin/water/cyclohexane reverse micelles, J. Am. Chem. Soc., 120, 4151-4160 (1998). https://doi.org/10.1021/ja980086k
  4. Y. A. Shchipunov, Lecithin organogel: A micellar system with unique properties, Colloids Surf. A Physicochem. Eng. Asp., 183-185, 541-554 (2001). https://doi.org/10.1016/S0927-7757(01)00511-8
  5. R. Scartazzini and P. L. Luisi, Organogels from lecithins, J. Phys. Chem., 92, 829-833 (1988). https://doi.org/10.1021/j100314a047
  6. H. Y. Lee, K. K. Diehn, S. W. Ko, S. H. Tung, and S. R. Raghavan, Can simple salts influence self-assembly in oil? Multivalent cations as efficient gelators of lecithin organosols, Langmuir, 26, 13831-13838 (2010). https://doi.org/10.1021/la1019108
  7. S. H. Tung, Y. E. Huang, and S. R. Raghavan, A new reverse wormlike micellar system: Mixtures of bile salt and lecithin in organic liquids, J. Am. Chem. Soc., 128, 5751-5756 (2006). https://doi.org/10.1021/ja0583766
  8. S. T. Lin, C. S. Lin, Y. Y. Chang, A. E. Whitten, A. Sokolova, C. M. Wu, V. A. Ivanov, A. R. Khokhlov, and S. H. Tung, Effects of alkali cations and halide anions on the self-assembly of phosphatidylcholine in oils, Langmuir, 32, 12166-12174 (2016). https://doi.org/10.1021/acs.langmuir.6b03449
  9. C. R. Lee, Y. K. Lee, E. J. Oh, K. S. Jin, and H. Y. Lee, Effect of aliphatic solvents on the reverse self-assembly of lecithin and calcium chloride mixtures, J. Mol. Liq., 316, 113790 (2020). https://doi.org/10.1016/j.molliq.2020.113790
  10. Y. G. Jung, C. R. Lee, H. J. Kim, M. G. Kim, K. S. Jin, and H. Y. Lee, Effect of hydrocarbon chain length of aliphatic solvents on the reverse self-assembly of lecithin and monovalent ion mixtures, Colloids Surf. A Physicochem. Eng. Asp., 607, 125441 (2020). https://doi.org/10.1016/j.colsurfa.2020.125441
  11. K. Mukherjee, S. P. Moulik, and D. C. Mukherjee, Thermodynamics of micellization of Aerosol OT in polar and nonpolar solvents. A calorimetric study, Langmuir, 9, 1727-1730 (1993). https://doi.org/10.1021/la00031a02
  12. G. Dutt, Does the onset of water droplet formation alter the microenvironment of the hydrophobic probes solubilized in nonionic reverse micelles?, J. Phys. Chem. B, 108, 7944-7949 (2004). https://doi.org/10.1021/jp049160d
  13. H. Y. Lee, K. K. Diehn, K. Sun, T. Chen, and S. R. Raghavan, Reversible photorheological fluids based on spiropyran-Doped reverse micelles, J. Am. Chem. Soc., 133, 8461-8463 (2011). https://doi.org/10.1021/ja202412z
  14. L. K. Shrestha, R. G. Shrestha, and K. Aramaki, Intrinsic parameters for the structure control of nonionic reverse micelles in styrene: SAXS and Rheometry studies, Langmuir, 27, 5862-5873 (2011). https://doi.org/10.1021/la200663v
  15. P. Terech and R. G. Weiss, Low molecular mass gelators of organic liquids and the properties of their gels, Chem. Rev., 97, 3133-3160 (1997). https://doi.org/10.1021/cr9700282
  16. Z. D. Knezevic, S. S. Siler-Marinkovic, and L. V. Mojovic, Kinetics of lipase-catalyzed hydrolysis of palm oil in lecithin/izooctane reversed micelles, Appl. Microbiol. Biotechnol., 49, 267-271 (1998). https://doi.org/10.1007/s002530051167
  17. D. Madamwar and A. Thakar, Entrapment of enzyme in water-restricted microenvironment for enzyme-mediated catalysis under microemulsion-based organogels, Appl. Biochem. Biotechnol., 118, 361-369 (2004). https://doi.org/10.1385/ABAB:118:1-3:361
  18. F. Dreher, P. Walde, P. Walther, and E. Wehrli, Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport, J Control Release, 45, 131-140 (1997). https://doi.org/10.1016/S0168-3659(96)01559-3
  19. M. Kreilgaard, Influence of microemulsions on cutaneous drug delivery, Adv. Drug Deliv. Rev., 54, S77-S98 (2002). https://doi.org/10.1016/S0169-409X(02)00116-3
  20. H. J. Lee, H. J. Kim, D. G. Park, K. S. Jin, J. W. Chang, and H. Y. Lee, Mechanism for transition of reverse cylindrical micelles to spherical micelles induced by diverse alcohols, Langmuir, 36, 8174-8183 (2020). https://doi.org/10.1021/acs.langmuir.0c01246
  21. S. R. Kline, Reduction and analysis of SANS and USANS data using IGOR Pro, J. Appl. Cryst., 39, 895-900 (2006). https://doi.org/10.1107/S0021889806035059
  22. J. S. Pedersen, Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting, Adv. Colloid Interface Sci., 70, 171-210 (1997). https://doi.org/10.1016/S0001-8686(97)00312-6
  23. J. S. Pedersen and P. Schurtenberger, Scattering functions of semi-flexible polymers with and without excluded volume effects, Macromolecules, 29, 7602-7612 (1996). https://doi.org/10.1021/ma9607630
  24. C. W. Macosko, Rheology: Principles, Measurements, and Applications, Wiley-VCH, Weinheim, Germany (1994).
  25. O. Glatter, A new method for the evaluation of small-angle scattering data, J. Appl. Cryst., 10, 415-421 (1977). https://doi.org/10.1107/S0021889877013879
  26. O. A. Ogunsola, M. E. Kraeling, S. Zhong, D. J. Pochan, R. L. Bronaugh, and S. R. Raghavan, Structural analysis of "flexible" liposome formulations: new insights into the skin-penetrating ability of soft nanostructures, Soft Matter, 8, 10226-10232 (2012). https://doi.org/10.1039/c2sm26614h