Folia Parasitologica 66:001 (2019) | DOI: 10.14411/fp.2019.001

Nanoparticles show potential to retard bradyzoites in vitro formation of Toxoplasma gondii

Oluyomi Stephen Adeyemi1,2, Yuho Murata1, Tatsuki Sugi1, Yongmei Han1, Kentaro Kato1
1 National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Japan;
2 Medicinal Biochemistry and Toxicology Laboratory, Department of Biochemistry, Landmark University, Ipetu Road, Nigeria

Toxoplasmosis is a common parasitic disease caused by Toxoplasma gondii (Nicolle et Manceaux, 1908), an obligate parasite capable of infecting a range of cell types in almost all warm-blooded animals. Upon infecting an intermediate host, the parasites differentiate into tachyzoites which rapidly infect host tissues. Usually, the invading parasites are cleared by the immune system and administered drugs, but some tachyzoites differentiate into bradyzoites forming tissue cysts. These tissue cysts could serve as a source for re-infection and exacerbations. Currently, treatment for toxoplasmosis is limited and, moreover, there are no drugs for treating the cystic stage thus rendering toxoplasmosis a global burden. Recently, we demonstrated that inorganic nanoparticles showed promising activity against the tachyzoite stage T. gondii. In the present study, we evaluated nanoparticles for effect on bradyzoite formation in vitro. Data revealed that the nanoparticles limited bradyzoite burden in vitro. Further, the nanoparticles decreased the bradyzoite-specific BAG-1 promoter activity relative to the untreated control under a bradyzoite-inducing culture condition, even though this reduction in BAG-1 promoter activity waned with increasing concentrations of nanoparticles. In contrast, a parallel experiment under normal cell culture conditions showed that the nanoparticle treatment mildly increased the BAG-1 promoter activity relative to the untreated control. Taken together, the findings are evidence that nanoparticles not only possess anti-tachyzoite potential but they also have anti-bradyzoite potential in vitro.

Keywords: cyst, infection, medicinal biochemistry, nanomedicine, toxoplasmosis

Received: March 10, 2018; Accepted: January 9, 2019; Published online: February 21, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Adeyemi, O.S., Murata, Y., Sugi, T., Han, Y., & Kato, K. (2019). Nanoparticles show potential to retard bradyzoites in vitro formation of Toxoplasma gondii . Folia Parasitologica66, Article 2019.001. https://doi.org/10.14411/fp.2019.001
Download citation

References

  1. Adeyemi O.S., Adewumi I., Faniyan T.O. 2014: Silver nanoparticles influenced rat serum metabolites and tissue morphology. J. Basic Clin. Physiol. Pharmacol. 26: 355-361. Go to original source... Go to PubMed...
  2. Adeyemi O.S., Faniyan T. 2014: Antioxidant status in rats orally administered silver nanoparticle. J. Taibah Uni. Med. Sci. 9: 182-186. Go to original source...
  3. Adeyemi O.S., Murata Y., Sugi T., Han Y., Kato K. 2018a: Exploring amino acid-capped nanoparticles for selective anti-parasitic action and improved host biocompatibility. J. Biomed. Nanotechnol. 14: 847-867. Go to original source... Go to PubMed...
  4. Adeyemi O.S., Murata Y., Sugi T., Kato K. 2017: Inorganic nanoparticles kill Toxoplasma gondii via changes in redox status and mitochondrial membrane potential. Int. J. Nanomed. 12: 1647-1661. Go to original source... Go to PubMed...
  5. Adeyemi O.S., Olajide I.O., Adeyanju A.A., Awakan O.J., Otohinoyi D.A. 2018b: Modulation of rat plasma kynurenine level by platinum nanoparticles and likely association with oxidative stress. Biointerface Res. Appl. Chem. 8: 3364-3367.
  6. Adeyemi O.S., Sulaiman F.A. 2015: Evaluation of metal nanoparticles for drug delivery systems. J. Biomed. Res. 29: 145-149. Go to original source...
  7. Adeyemi O.S., Sulaiman F.A., Akanji M.A., Oloyede H.O.B., Olatunde A., Ajayi A.G., Salman S.T., Aransiola A.R., Ekundayo M.M., Abubakar F.A., Olaoye S.A. 2016: Biochemical and morphological changes in rats exposed to platinum nanoparticles. Comp. Clin. Pathol. 25: 855-864. Go to original source...
  8. Ahmad A., Syed F., Shah A., Khan Z., Tahir K., Khan A.U., Yuan Q. 2015: Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Adv. 5: 73793-73806. Go to original source...
  9. Allahverdiyev A.M., Abamor E.S., Bagirova M., Ustundag C.B., Kaya C., Kaya F., Rafailovich M. 2011: Anti-leishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int. J. Nanomed. 6: 2705-2714. Go to original source... Go to PubMed...
  10. Black M.W., Boothroyd J.C. 2000: Lytic cycle of Toxoplasma gondii. Microbiol. Mol. Biol. Rev. 64: 607- 623. Go to original source... Go to PubMed...
  11. Bohne W., Heesemann J., Gross U. 1994: Reduced replication of Toxoplasma gondii is necessary for induction of bradyzoite-specific antigens: a possible role for nitric oxide in triggering stage conversion. Infect. Immun. 62: 1761-1767. Go to original source... Go to PubMed...
  12. Boothroyd J.C., Dubremetz J.F. 2008: Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat. Rev. Microbiol. 6: 79-88. Go to original source... Go to PubMed...
  13. Curtis A., Wilkinson C. 2001: Nanotechniques and approaches in biotechnology. Trends Biotechnol. 9: 97-101. Go to original source... Go to PubMed...
  14. Debbage P. 2009: Targeted drugs and nanomedicine: present and future. Curr. Pharm. Des. 15: 153-172. Go to original source... Go to PubMed...
  15. Jiao Z., Li M., Feng Y., Shi J., Zhang J., Shao B. 2014. Hormesis effects of silver nanoparticles at non-cytotoxic doses to human hepatoma cells. PLoS ONE. 9: e102564. Go to original source... Go to PubMed...
  16. Kamau E.T., Srinivasan A.R., Brown M.J., Fair M.G., Caraher E.J., Boyle J.P. 2012: A focused small-molecule screen identifies 14 compounds with distinct effects on Toxoplasma gondii. Antimicrob. Agents Chemother. 56: 5581-5590. Go to original source... Go to PubMed...
  17. Leyke S., Köhler-Sokolowska W., Paulke B., Presber W. 2012: Effects of nanoparticles in cells infected by Toxoplasma gondii. E-Polymers 12: 647-663.  Go to original source...
  18. Maneewattanapinyo P., Banlunara W., Thammacharoen C., Ekgasit S., Kaewamatawong T. 2011: An evaluation of acute toxicity of colloidal silver nanoparticles. J. Vet. Med. Sci. 73: 1417-1423. Go to original source... Go to PubMed...
  19. Maubon D., Bougdour A., Wong Y., Brenier-Pinchart M., Curt A., Hakimi M., Pelloux H. 2010: Activity of the histone deacetylase inhibitor FR235222 on Toxoplasma gondii: inhibition of stage conversion of the parasite cyst form and study of new derivative compounds. Antimicrob. Agents Chemother. 54: 4843-4850. Go to original source... Go to PubMed...
  20. Pokharkar V., Dhar S., Bhumkar D., Mali V., Bodhankar S., Prasad B.L. 2009: Acute and subacute toxicity studies of chitosan reduced gold nanoparticles: a novel carrier for therapeutic agents. J. Biomed. Nanotechnol. 5: 233-239. Go to original source... Go to PubMed...
  21. Rahul S., Chandrashekhar P., Hemant B., Bipinchandra S., Mouray E., Grellier P., Satish P. 2015: In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol. Int. 64: 353-356. Go to original source... Go to PubMed...
  22. Saad A.H.A., Soliman M.I., Azzam A.M., Mostafa B. 2015: Antiparasitic activity of silver and copper oxide nanoparticles against Entamoeba histolytica and Cryptosporidium parvum cysts. J. Egypt. Soc. Parasitol. 45: 593-602. Go to original source... Go to PubMed...
  23. Saini P., Saha S.K., Roy P., Chowdhury P., Sinha Babu S.P. 2016: Evidence of reactive oxygen species (ROS)-mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Exp. Parasitol. 160: 39-48. Go to original source... Go to PubMed...
  24. Skariah S., McIntyre M.K., Mordue D.G. 2010: Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion. Parasitol. Res. 107: 253-260. Go to original source... Go to PubMed...
  25. Sugi T., Masatani T., Murakoshi F., Kawazu S., Kato K. 2014: Microplate assay for screening Toxoplasma gondii bradyzoite differentiation with DUAL luciferase assay. Anal. Biochem. 464: 9-11. Go to original source... Go to PubMed...
  26. Sulaiman F.A., Akanji M.A., Oloyede H.O.B., Sulaiman A.A., Olatunde A., Joel E.B., Adewale T.H., Adeboye H.A., Idris S.O., Quadri A.L., Oyegoke R.A., Adeyemi O.S. 2015: Oral exposure to silver/gold nanoparticles: status of rat lipid profile, serum metabolites and tissue morphology. J. Med. Sci. 15: 71-79. Go to original source...
  27. Tomita T., Bzik D.J., Ma Y.F., Fox B.A., Markillie L.M., Taylor R.C., Kim K., Weiss L.M. 2013: The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence. PLoS Pathog. 9: e1003823. Go to original source... Go to PubMed...
  28. Weiss L.M., Ma Y.F., Takvorian P.M., Tanowitz H.B., Wittner M. 1998: Bradyzoite development in Toxoplasma gondii and the hsp70 stress response. Infect. Immun. 66: 3295-3302. Go to original source... Go to PubMed...
  29. Yah C.S., Simate G.S. 2015: Nanoparticles as potential new generation broad spectrum antimicrobial agents. Daru. 23: 43. Go to original source... Go to PubMed...