Folia Parasitologica 65:006 (2018) | DOI: 10.14411/fp.2018.006

Horizontal transmission of the ectoparasite Gyrodactylus arcuatus (Monogenea: Gyrodactylidae) to the next generation of the three-spined stickleback Gasterosteus aculeatus

Jaakko Lumme1, Marek S. Ziêtara2
1 Department of Ecology and Genetics, University of Oulu, Finland;
2 Faculty of Biology, University of Gdañsk, Poland This article contains supporting information (S1-S4) online at http://folia.paru.cas.cz/suppl/2018-65-006.pdf

In the parthenogenetic monogeneans of the genus Gyrodactylus Nordmann, 1832, the genetic diversity within or between hosts is determined by the relative roles of lateral transmission and clonal propagation. Clonality and limited transmission lead to high-amplitude metapopulation dynamics and strong genetic drift. In Baltic populations of the three-spined stickleback Gasterosteus aculeatus Linnaeus, the local mitochondrial diversity of Gyrodactylus arcuatus Bychowsky, 1933 is very high, and spatial differentiation weak. To understand the transmission dynamics in a single location, the transmission of the parasite from adults to next generation sticklebacks was investigated in a northern Baltic brackish water location. By sequencing 777 nt of cox1, as many as 38 separate mitochondrial haplotypes were identified. In August, the intensity of gyrodactylid infection on adult hosts was high, the haplotype diversity (h) was extreme and differentiation between fish was negligible (total h = 0.926, mean h = 0.938). In October, only 46% of the juvenile sticklebacks carried G. arcuatus. The number of parasites per young fish followed a Poisson distribution 0.92 ± 1.04 (mean ± SD) on October 2, and was clearly overdispersed 2.38 ± 5.00 on October 25. The total haplotype diversity of parasites on juveniles was nearly as high as in adults (h = 0.916), but the mean per fish was only h = 0.364 (FST = 0.60), due to low intensity of infection and rapid clonal propagation of early arrivals. The initial first come first served advantage of the first gyrodactylid colonisers will be lost during the host adulthood via continuous transmission. Nesting and polygamy are suggested as factors maintaining the high genetic diversity of the parasite population. The transmission dynamics and, consequently, the population structure of Baltic G. arcuatus is fundamentally different from that of G. salaris Malmberg, 1957, on the Baltic salmon Salmo salar Linnaeus.

Keywords: clonal propagation, competition, parasite transition

Received: November 10, 2016; Accepted: January 17, 2018; Published online: April 19, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lumme, J., & Ziêtara, M.S. (2018). Horizontal transmission of the ectoparasite Gyrodactylus arcuatus (Monogenea: Gyrodactylidae) to the next generation of the three-spined stickleback Gasterosteus aculeatus. Folia Parasitologica65, Article 2018.006. https://doi.org/10.14411/fp.2018.006
Download citation

Attachments

Download fileFP_065_006_Suppl.pdf

File size: 410.14 kB

References

  1. Anttila P., Romakkaniemi A., Kuusela J., Koski P. 2008: Epidemiology of Gyrodactylus salaris (Monogenea) in the River Tornionjoki, a Baltic wild salmon river. J. Fish Dis. 31: 373-382. Go to original source... Go to PubMed...
  2. Bakke T.A., Cable J., Harris P.D. 2007: The biology of Gyrodactylid Monogeneans: The "Russian-Doll Killers". Adv. Parasitol. 64: 161-376. Go to original source... Go to PubMed...
  3. Bakke T.A., Harris P.D., Cable J. 2002: Host specificity dynamics: observations on gyrodactylid monogeneans. Int. J. Parasitol. 32: 281-308. Go to original source... Go to PubMed...
  4. Barber I. 2013: Sticklebacks as model host in ecological and evolutionary parasitology. Trend. Parasitol. 29: 556-566. Go to original source... Go to PubMed...
  5. Boeger W.A., Kritsky D.C., Pie M.R., Engers K.B. 2005: Mode of transmission, host switching, and escape from the Red Queen by viviparous gyrodactylids (Monogenoidea). J. Parasitol. 91: 1000-1007. Go to original source... Go to PubMed...
  6. Cable J., Harris P.D. 2002: Gyrodactylid developmental biology: historical review, current status and future trends. Int. J. Parasitol. 32: 255-280. Go to original source... Go to PubMed...
  7. Cano J.M., Mäkinen H.S., Merilä J. 2008: Genetic evidence for male-biased dispersal in the three-spined stickleback (Gasterosteus aculeatus). Mol. Ecol. 17: 3234-3242. Go to original source... Go to PubMed...
  8. Criscione C.D., Poulin R., Blouin M.S. 2005: Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol. Ecol. 14: 2247-2257. Go to original source... Go to PubMed...
  9. DeFaveri J., Jonsson P.R., Merilä J. 2013: Heterogeneous genomic differentiation in marine threespine sticklebacks: adaptation along an environmental gradient. Evolution 67: 2530-2546. Go to original source... Go to PubMed...
  10. Eizaguirre C., Yeates S.E., Lenz T.I., Kalbe M., Milinski M. 2009: MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol. Ecol. 18: 3316-3329. Go to original source... Go to PubMed...
  11. Excoffier L., Laval G., Schneider S. 2005: Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinf. Online 1: 47-50. Go to original source...
  12. Harris P.D. 1998: Ecological and genetic evidence for clonal reproduction in Gyrodactylus gasterostei Gläser, 1974. Int. J. Parasitol. 28: 1595-1607. Go to original source... Go to PubMed...
  13. Huyse T., Oeyen M., Larmuseau M.H.D., Volckaert F.A.M. 2017: Co-phylogeographic study of the flatworm Gyrodactylus gondae and its goby host Pomatoschistus minutus. Parasitol. Int. 66: 119-125. Go to original source... Go to PubMed...
  14. Huyse T., Poulin R., Théron A. 2005: Speciation in parasites: a population genetics approach. Trend. Parasitol. 21: 469-475. Go to original source... Go to PubMed...
  15. Kuusela J., Holopainen R., Meinilä M., Anttila P., Koski P., Ziêtara M.S., Veselov A., Primmer C.R., Lumme J.2009: Clonal structure of salmon parasite Gyrodactylus salaris on a coevolutionary gradient on Fennoscandian salmon (Salmo salar). Ann. Zool. Fenn. 46: 21-33. Go to original source...
  16. Kuusela J., Ziêtara M.S., Lumme J. 2007: Hybrid origin of Baltic salmon-specific parasite Gyrodactylus salaris: a model for speciation by host switch for hemiclonal organisms. Mol. Ecol. 16: 5234-5245. Go to original source... Go to PubMed...
  17. Lester R.J.G., Adams J.R. 1974: Gyrodactylus alexanderi: reproduction, mortality, and effect on its host Gasterosteus aculeatus. Can. J. Zool. 52: 827-833. Go to original source... Go to PubMed...
  18. Lumme J., Anttila P., Rintamäki P., Koski P. Romakkaniemi A. 2016a: Genetic gradient of a host-parasite pair persisted ten years against physical mobility: Baltic Salmo salar vs. Gyrodactylus salaris. Inf. Genet. Evol. 45: 33-39. Go to original source... Go to PubMed...
  19. Lumme J., Mäkinen H., Ermolenko A.V., Gregg J.L., Ziêtara M.S. 2016b: Displaced phylogeographic signals from Gyrodactylus arcuatus, a parasite of the three-spined stickleback Gasterosteus aculeatus, suggest freshwater glacial refugia in Europe. Int. J. Parasitol. 46: 545-664. Go to original source... Go to PubMed...
  20. Lumme J., Ozerov M.Y., Veselov A.E., Primmer C.R. 2015: The formation of landlocked populations of atlantic salmon. In: T. Vladic and E. Petersson (Eds.), Evolutionary Biology of the Atlantic Salmon. CRC Press, Boca Raton Fla, pp. 26-43.
  21. MacArthur R., Levins R. 1964: Competition, habitat selection and character displacement in a patchy environment. Proc. Natl. Acad. USA 51: 1207-1210. Go to original source... Go to PubMed...
  22. MacColl A.D.C., Chapman S.M. 2011: Parasites can cause seelction against migrants following dispersal between environments. Func. Ecol. 24: 847-856. Go to original source...
  23. Raeymaekers J.A.M., Huyse T., Maelfait H., Hellemans B., Volckaert F.A.M. 2008: Community structure, population structure and topographical specialization of Gyrodactylus (Monogenea) ectoparasites living on sympatric stickleback species. Folia Parasitol. 55: 187-196. Go to original source... Go to PubMed...
  24. Raeymaekers J.A.M, Wegner K.M., Huyse T., Volckaert F.A.M. 2011: Infection dynamics of the monogenean parasite Gyrodactylus gasterostei on sympatric and allopatric populations of the three-spined stickleback Gasterosteus aculeatus. Folia Parasitol. 58: 27-34. Go to original source... Go to PubMed...
  25. de Roij J., Harris P.D., MacColl D.C. 2011: Divergent resistance to a monogenean flatworm among three-spined stickleback populations. Func. Ecol. 25: 217-226. Go to original source...
  26. Schluter D. 2000: The Ecology of Adaptive Radiation. Oxford University Press, New York, 296 pp.
  27. Tamura K., Dudley J., Nei M., Kumar S. 2007: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24: 1596-1599. Go to original source... Go to PubMed...
  28. Tamura K., Nei M., Kumar S. 2004: Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101: 11030-11035. Go to original source... Go to PubMed...
  29. Tyler A.V. 1963: A cleaning symbiosis between the rainwater fish, Lucania parva and the stickleback, Apeltes quadracus. Ches. Sci. 4: 105-106. Go to original source...
  30. Vogwill T., Fenton A., Brockhurst M.A. 2009: The impact of parasite dispersal on antagonistic host-parasite coevolution. J. Evol. Biol. 21: 1252-1258. Go to original source... Go to PubMed...
  31. Wild G., Gardner A., West S.A. 2009: Adaptation and the evolution of parasite virulence in a connected world. Nature 459: 983-986. Go to original source... Go to PubMed...
  32. Ziêtara M.S., Kuusela J. Veselov A., Lumme J. 2008: Molecular faunistics of accidental infections of Gyrodactylus Nordmann, 1832 (Monogenea) parasitic on salmon Salmo salar L. and brown trout Salmo trutta L. in NW Russia. Syst. Parasitol. 69: 123-135. Go to original source... Go to PubMed...
  33. Ziêtara M.S., Rokicka M., Stojanovski S., Lumme J. 2010: Introgression of distant mitochondria into the genome of Gyrodactylus salaris: nuclear and mitochondrial markers are necessary to identify parasite strains. Acta Parasitol. 55: 20-28. Go to original source...