Eur. J. Entomol. 111 (4): 487-494, 2014 | DOI: 10.14411/eje.2014.063

Effects of cold acclimation, cooling rate and heat stress on cold tolerance of the potato tuber moth Phthorimaea operculella (Lepidoptera: Gelechiidae)

Chamran HEMMATI, Saeid MOHARRAMIPOUR*, Ali ASGHAR TALEBI
Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box, 14115-336 Tehran, Iran; e-mails: moharami@modares.ac.ir; chamran.hemmati@gmail.com; talebia@modares.ac.ir

This study was carried out to investigate the effects of cold acclimation, cooling rate and heat stress on supercooling capacity and cold hardiness of the potato tuber moth (PTM), Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Supercooling points (SCP) of first and last instar larvae, prepupae and pupae were -21.8, -16.9, -18.9 and -18.0°C, respectively. Cold acclimation (1-week at 0 and 5°C) did not affect SCPs of acclimated last instar larvae, prepupae and pupae. LT50s (lower lethal temperature for 50% mortality) for first and last instar larvae, prepupae and pupae were -15.5, -12.4, -17.9 and -16.0°C, respectively. Cold acclimation resulted in a significant decrease in mortality of all developmental stages. In addition, the mortality rates of the different developmental stages decreased with decrease in cooling rate. In addition, heat hardening (kept at 40°C for 2 h) significantly reduced mortality of all developmental stages exposed to LT50 conditions, suggesting that heat hardening also affects cold tolerance. Results indicate that none of the stages could tolerate subzero temperatures below their SCPs, indicating that this species might be a chill tolerant insect. These adaptive responses may allow PTM to enhance its cold tolerance and colonize cold regions.

Keywords: Lepidoptera, Gelechiidae, Phthorimaea operculella, freeze intolerant insects, lower lethal temperature, cold hardiness, cross resistant

Received: July 19, 2013; Revised: June 6, 2014; Accepted: June 6, 2014; Prepublished online: August 15, 2014; Published: October 1, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
HEMMATI, C., MOHARRAMIPOUR, S., & ASGHAR TALEBI, A. (2014). Effects of cold acclimation, cooling rate and heat stress on cold tolerance of the potato tuber moth Phthorimaea operculella (Lepidoptera: Gelechiidae). EJE111(4), 487-494. doi: 10.14411/eje.2014.063
Download citation

References

  1. Andreadis S.S., Milonas G.P. & Savopoulou-Soultani M. 2005: Cold hardiness of diapausing and non-diapausing pupae of the European grapevine moth, Lobesia botrana. - Entomol. Exp. Appl. 117: 113-118 Go to original source...
  2. Angell C.A. 1982: Supercooled water. In Franks F. (ed.): Water: A Comprehensive Treatise. Plenum, New York, pp. 1-81 Go to original source...
  3. Atapour M., Moharramipour S. & Barzegar M. 2011: Changes of cryoprotectants in overwintering larvae of beet armyworm, Spodoptera exigua (Lep.: Noctuidae). - J. Entomol. Soc. Iran 31: 33-50
  4. Bale J.S. 1996: Insect cold hardiness: a matter of life and death. - Eur. J. Entomol. 93: 369-382
  5. Baust J.G. 1973: Mechanisms of cryoprotection in freezing tolerant animal systems. - Cryobiology 10: 197-205 Go to original source...
  6. Behdad E. 2002: Introductory Entomology and Important Plant Pests in Iran. Yadbud Press, Isfahan, 840 pp. [in Persian]
  7. Boardman L., Tim G. & Terblanche J.S. 2012: False codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae) larvae are chill-susceptible. - Insect Sci. 19: 315-328 Go to original source...
  8. Briese D.T. 1986: Geographic variability in demographic performance of the potato moth, Phthorimaea operculella Zell. -Aust. Bull. Entomol. Res. 76: 719-726 Go to original source...
  9. Bubliy O.A., Kristensen T.N., Kellermann V. & Loeschcke V. 2012: Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. - Funct. Ecol. 26: 245-253 Go to original source...
  10. Cannon R.J. 1988: Diet and acclimation effects on the cold tolerance and survival of an Antarctic springtail. - Br. Antarct. Surv. Bull. 71: 19-30
  11. Chen C.P., Denlinger D.L. & Lee R.E. Jr. 1987: Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. - Physiol. Zool. 60: 297-304 Go to original source...
  12. Chown S.L. & Nicolson S.W. 2004: Insect Physiological Ecology: Mechanisms and Patterns. Oxford University Press, Oxford, 243 pp Go to original source...
  13. Coll M., Gavish S. & Dori I. 2000: Population biology of the potato tuber moth, Phthorimaea opercuella (Lepidoptera: Gelechiidae) in two potato cropping systems in Israel. - Bull. Entomol. Res. 90: 309-315 Go to original source...
  14. Denlinger D.L. & Lee R.E. 1998: Physiology of cold sensitivity. In Hallman G.J. & Denlinger D.L. (eds): Temperature Sensitivity in Insects and Application in Integrated Pest Management. Westview Press, Boulder, pp. 55-95 Go to original source...
  15. Denlinger D.L., Joplin K.H., Chen C.P. & Lee R.E. 1991: Cold shock and heat shock. In Lee R.E. Jr. & Denlinger D.L. (eds): Insects at Low Temperature. Chapmann and Hall, New York, pp. 131-148 Go to original source...
  16. Dŏgramaci M., Rondon S.I. & DeBano S.J. 2008: The effect of soil depth and exposure to winter conditions on survival of the potato tuberworm Phthorimaea operculella (Lepidoptera: Gelechiidae). - Entomol. Exp. Appl. 129: 332-339 Go to original source...
  17. Golizadeh A. & Zalucki M.P. 2012: Estimating temperature-dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae). - Insect Sci. 19: 609-620 Go to original source...
  18. Herman T.J.B., Clearwater J.R. & Triggs C.M. 2005: Impact of pheromone trap design, placement and pheromone blend on catch of potato tuber moth. - N. Z. Plant Prot. 58: 219-223 Go to original source...
  19. Hoffmann A.A. 1995: Acclimation: increasing survival at a cost. - Trends Ecol. Evol. 10: 1-2 Go to original source...
  20. Ishiguro S., Li Y., Nakano K., Tsumuki H. & Goto M. 2007: Seasonal changes in glycerol content and cold hardiness in two ecotypes of the rice stem borer, Chilo suppressalis, exposed to the environment in the Shonai district, Japan. - J. Insect Physiol. 53: 392-397 Go to original source...
  21. Ju R., Xiao Y. & Li B. 2011: Rapid cold hardening increases cold and chilling tolerances more than acclimation in the adults of the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae). - J. Insect Physiol. 57: 1577-1582 Go to original source...
  22. Kelty J.D. & Lee R.E. Jr. 1999: Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. - J. Insect Physiol. 45: 719-726 Go to original source...
  23. Kelty J.D. & Lee R.E. Jr. 2001: Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. - J. Exp. Biol. 204: 1659-1666 Go to original source...
  24. Khani A. & Moharamipour S. 2011: Cold hardiness and supercooling capacity in the overwintering larvae of the codling moth, Cydia pomonella. - J. Insect Sci. 10: 12 pp Go to original source...
  25. Khani A., Moharramipour S. & Barzegar M. 2007: Cold tolerance and trehalose accumulation in overwintering larvae of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). -Eur. J. Entomol. 104: 385-392 Go to original source...
  26. Khodayari S., Moharramipour S., Kamali K., Jalali Javaran M. & Renault D. 2012: Effect of acclimation and diapauses on thermal tolerance of the two-spotted spider mite Tetranychus urticae. - J. Therm. Biol. 37: 419-423 Go to original source...
  27. Kostal V., Slachta M. & Simek P. 2001: Cryoprotective role of polyols independent of the increase in supercooling capacity in diapausing adult of Pyrhocoris apeterus (Heteroptera: Pyrhocoridae). - Comp. Biochem. Physiol. (B) 130: 365-374 Go to original source...
  28. Krebs R.A. & Feder M.E. 1998: Hsp70 and larval thermotolerance in Drosophila melanogaster: how much is enough and when is more too much? - J. Insect Physiol. 44: 1091-1101 Go to original source...
  29. Kroschel J., Sporleder M., Tonnang H.E.Z., Juarez H., Carhuapoma P., Gonzales J.C. & Simon R. 2013: Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. - Agric. Forest Meteor. 170: 227-241 Go to original source...
  30. Langford G.S. 1934: Winter survival of the potato tuber moth, Phthorimaea operculella Zeller. - J. Econ. Entomol. 27: 210-213 Go to original source...
  31. Langford G.S. & Cory E.N. 1932: Observations on the potato tuber moth. - J. Econ. Entomol. 25: 625-634 Go to original source...
  32. Lee R.E. Jr. 2010: A primer on insect cold-tolerance. In Denlinger D.L. & Lee R.E. Jr. (eds): Low Temperature Biology of Insects. Cambridge University, Cambridge, pp. 3-34 Go to original source...
  33. Lee R.E. Jr., Strong-Gunderson J.M., Lee M.R., Grove K.S. & Riga T.J. 1991: Isolation of ice nucleating active bacteria from insects. - J. Exp. Zool. 257: 124-127 Go to original source...
  34. Lee R.E. Jr., Costanzo J.P. & Mugnano J.A. 1996: Regulation of supercooling and ice nucleation in insects. - Eur. J. Entomol. 93: 405-418
  35. Li Y., Goto M., Ding L. & Tsumuki H. 2002: Diapause development and acclimation regulating enzymes associated with glycerol synthesis in the Shonai ecotype of the rice stem borer larva, Chilo suppressalis Walker. - J. Insect Physiol. 48: 303-310 Go to original source...
  36. Miller L.K. 1978: Freezing tolerance in relation to cooling rate in an adult insect. - Cryobiology 15: 345-349 Go to original source...
  37. Morris G.J. & Watson P.F. 1984: Cold shock injury a comprehensive bibliography. - CryoLetters 5: 352-372
  38. Overgaard J., Kristensen T.N., Mitchell K.A. & Hoffmann A.A. 2011: Thermal tolerance in widespread and tropical Drosophila species: Does phenotypic plasticity increase with latitude? - Am. Nat. 178: 80-96 Go to original source...
  39. Overgaard J., Kristensen T.N. & Sorensen J.G. 2012: Validity of thermal ramping assays used to assess thermal tolerance in arthropods. - PLoS ONE 7(3): e32758 Go to original source...
  40. Popham H.J.R., George M.F. & Chippendale G.M. 1991: Cold hardiness of larvae of the southwestern corn borer, Diatraea grandiosella. - Entomol. Exp. Appl. 58: 251-260 Go to original source...
  41. Powell S.J. & Bale J.S. 2004: Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae). - J. Insect Physiol. 50: 277-284 Go to original source...
  42. Qiang C., Du Y., Cui L., Zheng F. & Lu M. 2008: Effect of rapid cold hardening on the cold tolerance of the larvae of the rice stem borer, Chilo suppressalis (Walker). - Agric. Sci. China 7: 321-328 Go to original source...
  43. Quinn P.J. 1985: A lipid-phase separation model of low-temperature damage to biological membranes. - Cryobiology 22: 128-146 Go to original source...
  44. Rezende E.L., Tejedo M. & Santos M. 2011: Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. - Func. Ecol. 25: 111-121 Go to original source...
  45. Saeidi F., Moharramipour S. & Barzegar M. 2012: Seasonal patterns of cold hardiness and cryoprotectant profiles in Brevicoryne brassicae (Hemiptera: Aphididae). - Environ. Entomol. 41: 1638-1643 Go to original source...
  46. Salt R.W. 1966: Effect of cooling rate on the freezing temperatures of supercooled insects. - Can. J. Zool. 44: 655-659 Go to original source...
  47. Santos M., Castan L.E. & Rezende E.L. 2011: Making sense of heat tolerance estimates in ectotherms: lessons from Drosophila. - Funct. Ecol. 25: 1169-1180 Go to original source...
  48. Shintani Y. & Ishikawa Y. 2007: Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris. - J. Insect Physiol. 53: 1055-1062 Go to original source...
  49. Sinclair B.J. & Chown S.L. 2003: Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae). - J. Insect Physiol. 49: 45-52 Go to original source...
  50. Slabber S., Worland M.R., Leinaas H.P. & Chown S.L. 2007: Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species. - J. Insect Physiol. 53: 113-125 Go to original source...
  51. Somme L. 1982: Supercooling and winter survival in terrestrial arthropods. - Comp. Biochem. Physiol. (A) 73: 519-543 Go to original source...
  52. Sorensen J.G., Kristensen T.N. & Loeschcke V. 2003: The evolutionary and ecological role of heat shock proteins. - Ecol. Lett. 6: 1025-1037 Go to original source...
  53. Storey K.B. & Storey J.M. 1988: Freeze tolerance in animals. - Physiol. Rev. 68: 27-84 Go to original source...
  54. Sung D.Y., Kaplan F., Lee K.J. & Guy C.L. 2003: Acquired tolerance to temperature extremes. - Trends Plant Sci. 8: 179-187 Go to original source...
  55. Teets N.M. & Denlinger D.L. 2013: Physiological mechanisms of seasonal and rapid cold-hardening in insects. - Physiol. Entomol. 38: 105-116 Go to original source...
  56. Terblanche J.S., Hoffmann A.A., Katherine A.M., Lea R., Peter C.L.R. & Chown S.L. 2011: Ecologically relevant measures of tolerance to potentially lethal temperatures. - J. Exp. Biol. 214: 3713-3725 Go to original source...
  57. Trivedi T.P. & Rajagopal D. 1992: Distribution, biology, ecology and management of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). - Trop. Pest Manag. 38: 279-285 Go to original source...
  58. Wang X.H., Qi X.L. & Kang L. 2010: Geographic differences on accumulation of sugars and polyols in locust eggs in response to cold acclimation. - J. Insect Physiol. 56: 966-970 Go to original source...
  59. Zheng X., Cheng W., Wang X. & Lei C. 2011: Enhancement of supercooling capacity and survival by cold acclimation, rapid cold and heat hardening in Spodoptera exigua. - Cryobiology 63: 164-169 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.