Skip to main content
Log in

Cardiovascular Risk Scales Association with Cerebrospinal Fluid Alzheimer’s Disease Biomarkers in Cardiovascular Low Cardiovascular Risk Regions

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

Cardiovascular risk factors are associated with Alzheimer’s Disease (AD) development. However, few studies compare the overall cardiovascular risk with AD biomarkers, and when done, they are mainly performed in moderate cardiovascular risk regions.

Objectives

To determine whether cardiovascular risk in older adults is associated with pathological cerebrospinal fluid (CSF) biomarkers of AD in a low cardiovascular risk population.

Design

This is a cross-sectional study performed between 2017 and 2020.

Participants

The present work included patients between 50 and 75 years old who were negative for CSF AD biomarkers and had minimum cognitive alterations (controls) and patients with positive CSF AD biomarkers and in early stages of AD (cases).

Measurements

CSF biomarkers included total tau, phosphorylated tau 181 and amyloid β42 (Aβ42). Analytical variables were obtained. ERICE, SCORE2 and Framingham scales were used to calculate the overall patient’s cardiovascular risk. The Aβ42/Aβ40 ratio and neurofilaments were explored when available.

Results

Two hundred and thirty-three patients were included. Nearly 76% of the sample had AD. AD patients had higher cardiovascular risk than controls (p-value < 0.05). ERICE and SCORE2 were associated with AD presence. Framingham was not. A correlation between elevated cardiovascular risk and higher total tau and NfL levels was observed when adjusted by age.

Conclusion

Cardiovascular risk assessment may be helpful in neurodegenerative disorders detection, as it is associated with CSF total tau and NfL. ERICE and SCORE2 may be useful scales in low cardiovascular risk regions to improve cardiovascular control and prevent neurodegenerative pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data Availability Statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Ribeiro VT, de Souza LC, Simões e Silva AC. Renin-Angiotensin System and Alzheimer’s Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives. Protein Pept Lett. 2020;27(6):484–511. doi:https://doi.org/10.2174/0929866527666191230103739

    Article  PubMed  CAS  Google Scholar 

  2. Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562. doi:https://doi.org/10.1016/J.JALZ.2018.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  3. Affleck AJ, Sachdev PS, Stevens J, Halliday GM. Antihypertensive medications ameliorate Alzheimer’s disease pathology by slowing its propagation. Alzheimer’s Dement (New York, N Y). 2020;6(1). doi:https://doi.org/10.1002/TRC2.12060

    Book  Google Scholar 

  4. Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–629. doi:https://doi.org/10.1016/S1474-4422(14)70090-0

    Article  PubMed  Google Scholar 

  5. Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284(6):643–663. doi:https://doi.org/10.1111/JOIM.12816

    Article  PubMed  CAS  Google Scholar 

  6. Arriagada J, Villalobos RÁ. Proteína tau como biomarcador en Alzheimer preclinico: Tau protein as a biomarker in preclinical Alzheimer’s disease. ARS MEDICA Rev Ciencias Médicas. 2022;47(2):56–67. doi:https://doi.org/10.11565/arsmed.v47i2.1892

    Article  Google Scholar 

  7. Xiong YL, Meng T, Luo J, Zhang H. The Potential of Neurofilament Light as a Biomarker in Alzheimer’s Disease. Eur Neurol. 2021;84(1):6–15. doi:https://doi.org/10.1159/000513008

    Article  PubMed  Google Scholar 

  8. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–446.doi:https://doi.org/10.1016/S0140-6736(20)30367-6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Leszek J, Mikhaylenko E V, Belousov DM, et al. The Links between Cardiovascular Diseases and Alzheimer’s Disease. Curr Neuropharmacol. 2020;19(2):152–169. doi:https://doi.org/10.2174/1570159x18666200729093724

    Article  Google Scholar 

  10. SCORE2-OP working group and ESC Cardiovascular risk collaboration, SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions, European Heart Journal, Volume 42, Issue 25, 1 July 2021, Pages 2455–2467, https://doi.org/10.1093/eurheartj/ehab312

    Article  Google Scholar 

  11. Tini G, Scagliola R, Monacelli F, et al. Alzheimer’s Disease and Cardiovascular Disease: A Particular Association. Cardiol Res Pract. 2020;2020. doi:https://doi.org/10.1155/2020/2617970

  12. D’Agostino RB, Vasan RS, Pencina MJ, et al. General Cardiovascular Risk Profile for Use in Primary Care. Circulation. 2008;117(6):743–753. doi:https://doi.org/10.1161/aRCULATIONAHA.107.699579

    Article  PubMed  Google Scholar 

  13. SCORE2 working group and ESC Cardiovascular risk collaboration, SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe, European Heart Journal, Volume 42, Issue 25, 1 July 2021, Pages 2439–2454, https://doi.org/10.1093/eurheartj/ehab309

    Article  Google Scholar 

  14. Zhao YL, Ou YN, Ma YH, et al. Association between Life’s Simple 7 and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology in cognitively intact adults: the CABLE study. Alzheimer’s Res Ther. 2022;14(1):1–9. doi:https://doi.org/10.1186/S13195-022-01019-2/FIGURES/3

    CAS  Google Scholar 

  15. Marrugat J, Vila J, Baena-Diez JM, et al. Relative Validity of the 10-Year Cardiovascular Risk Estimate in a Population Cohort of the REGICOR Study. Rev Espanola Cardiol (English Ed. 2011;64(5):385–394. doi:https://doi.org/10.1016/J.REC.2010.12.017

    Article  Google Scholar 

  16. Gabriel R, Brotons C, Tormo MJ, et al. The ERICE-score: the new native cardiovascular score for the low-risk and aged Mediterranean population of Spain. Rev Esp Cardiol (Engl Ed). 2015;68(3):205–215. doi:https://doi.org/10.1016/J.REC.2014.03.019

    Article  PubMed  Google Scholar 

  17. Kaptoge S, Penneils L, De Bacquer D, et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Heal. 2019;7(10):e1332. doi:https://doi.org/10.1016/S2214-109X(19)30318-3

    Article  Google Scholar 

  18. Rabin JS, Schultz AP, Hedden T, et al. Interactive Associations of Vascular Risk and p-Amyloid Burden With Cognitive Decline in Clinically Normal Elderly Individuals: Findings From the Harvard Aging Brain Study. JAMA Neurol. 2018;75(9):1124. doi:https://doi.org/10.1001/JAMANEUROL.2018.1123

    Article  PubMed  PubMed Central  Google Scholar 

  19. Song R, Xu H, Dintica CS, et al. Associations Between Cardiovascular Risk, Structural Brain Changes, and Cognitive Decline. J Am Coll Cardiol. 2020;75(20):2525–2534. doi:https://doi.org/10.1016/J.JACC.2020.03.053

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pettigrew C, Soldan A, Wang J, et al. Association of midlife vascular risk and AD biomarkers with subsequent cognitive decline. Neurology. 2020;95(23):e3093. doi:https://doi.org/10.1212/WNL.0000000000010946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Peña-Bautista C, López-Cuevas R, Cuevas A, Baquero M, Cháfer-Pericás C. Lipid peroxidation biomarkers correlation with medial temporal atrophy in early Alzheimer Disease. Neurochem Int. 2019;129:104519. doi:https://doi.org/10.1016/J.NEUINT.2019.104519

    Article  PubMed  Google Scholar 

  22. R-studio. Accessed December 21, 2022. https://posit.co/

  23. Erdfelder E, FAul F, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149–1160. doi:https://doi.org/10.3758/BRM.41.4.1149/METRICS

    Article  PubMed  Google Scholar 

  24. Viticchi G, Falsetti L, Buratti L, et al. Framingham risk score can predict cognitive decline progression in Alzheimer’s disease. Neurobiol Aging. 2015;36(ll):2940–2945. doi:https://doi.org/10.1016/J.NEUROBIOLAGING.2015.07.023

    Article  PubMed  Google Scholar 

  25. Bangen KJ, Nation DA, Delano-Wood L, et al. Aggregate effects of vascular risk factors on cerebrovascular changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement. 2015;11(4):394. doi:https://doi.org/10.1016/J.JALZ.2013.12.025

    Article  PubMed  Google Scholar 

  26. Sans S, Fitzgerald AP, Royo D, Conroy R, Graham I. Calibrating the SCORE Cardiovascular Risk Chart for Use in Spain. Rev Española Cardiol (English Ed. 2007;60(5):476–485. doi:https://doi.org/10.1016/S1885-5857(07)60188-1

    Article  Google Scholar 

  27. Borràs C, Mercer A, Sirisi S, et al. HDL-like-Mediated Cell Cholesterol Trafficking in the Central Nervous System and Alzheimer’s Disease Pathogenesis. Int J Mol Sci. 2022;23(16). doi:https://doi.org/10.3390/IJMS23169356

  28. Iwagami M, Qizilbash N, Gregson J, et al. Blood cholesterol and risk of dementia in more than 1–8 million people over two decades: a retrospective cohort study. Lancet Heal Longev. 2021;2(8):e498–e506. doi:https://doi.org/10.1016/S2666-7568(21)00150-1

    Article  Google Scholar 

  29. Abdulrahman H, van Dalen JW, den Brok M, Latimer CS, Larson EB, Richard E. Hypertension and Alzheimer’s disease pathology at autopsy: A systematic review. Alzheimer’s Dement. Published online 2022. doi:https://doi.org/10.1002/ALZ.12707

  30. García-Lluch G, Peña-Bautista C, Moreno Royo L, Baquero M, José Cañada-Martínez A, Chüfer-Pericüs C. Angiotensin II Receptor Blockers Reduce Tau/AB42 Ratio: A Cerebrospinal Fluid Biomarkers’ Case-Control Study. Pharm 2023, Vol 15, Page 924. 2023;15(3):924. doi:https://doi.org/10.3390/PHARMACEUTICS15030924

    Google Scholar 

  31. Gottesman RP, Schneider ALC, Zhou Y, et al. Association Between Midlife Vascular Risk Factors and Estimated Brain Amyloid Deposition. JAMA. 2017;317(14):1443–1450. doi:https://doi.org/10.1001/JAMA.2017.3090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lo RY, Jagust WJ. Vascular burden and Alzheimer disease pathologic progression. Neurology. 2012;79(13):1349. doi:https://doi.org/10.1212/WNL.0B013E31826C1B9D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Barro C, Chitnis T, Weiner HL. Blood neurofilament light: a critical review of its application to neurologic disease. Ann Clin Transi Neurol. 2020;7(12):2508–2523. doi:https://doi.org/10.1002/ACN3.51234

    Article  Google Scholar 

Download references

Acknowledgments

CC-P acknowledges a postdoctoral “Miguel Servet” grant CPII21/00006 and a FIS PI19/00570 grant from the Health Institute Carlos III (Spanish Ministry of Economy, Industry and Innovation), and a predoctoral “PFIS” grant FI20/00022 from the Health Institute Carlos III. The authors are grateful to Cathedra DeCo Micof-UCH, to GINEA’s team and to all of the participants and caregivers of the study participants.

Funding

Funding: This research was funded by Cathedra DeCo Micof-UCH and by Instituto de Salud Carlos III through the project PI19/00570 (Co-funded by European Union, «A way to make Europe»). The Instituto de Salud Carlos III had no role in the design and conduct of the study; in the collection, analysis, and interpretation of data; in the preparation of the manuscript; or in the review or approval of the manuscript. All the manuscript was performed by members of the Cathedra DeCo Micof-UCH.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: C.C-P, L.M, M.B and G.G-L designed this study. G.G-L drafted the manuscript. G.G-L, C.P-B and M.B contributed to data collection. J.P and G.G-L contributed to data analysis. C.C-P, L.M, M.B and G.G-L contributed to the interpretation of the data. C.C-P, L.M, J.P, M.B and G.G-L contributed to the final version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Juan Pardo Albiach or Consuelo Cháfer-Pericás.

Ethics declarations

Conflict of interest: The authors declare that they have no conflict of interest.

Additional information

How to cite this article: G. García-Lluch, J. Pardo, L. Moreno, et al. Cardiovascular Risk Scales Association with Cerebrospinal Fluid Alzheimer’s Disease Biomarkers in Cardiovascular Low Cardiovascular Risk Regions. J Prev Alz Dis 2024; https://doi.org/10.14283/jpad.2024.16

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Lluch, G., Pardo Albiach, J., Moreno, L. et al. Cardiovascular Risk Scales Association with Cerebrospinal Fluid Alzheimer’s Disease Biomarkers in Cardiovascular Low Cardiovascular Risk Regions. J Prev Alzheimers Dis 11, 453–462 (2024). https://doi.org/10.14283/jpad.2024.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2024.16

Key words

Navigation