Skip to main content
Log in

Ketone Ester Effects on Biomarkers of Brain Metabolism and Cognitive Performance in Cognitively Intact Adults ≥ 55 Years Old. A Study Protocol for a Double-Blinded Randomized Controlled Clinical Trial

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

Ketone bodies have been proposed as an “energy rescue” for the Alzheimer’s disease (AD) brain, which underutilizes glucose. Prior research has shown that oral ketone monoester (KME) safely induces robust ketosis in humans and has demonstrated cognitive-enhancing and pathology-reducing properties in animal models of AD. However, human evidence that KME may enhance brain ketone metabolism, improve cognitive performance and engage AD pathogenic cascades is scarce.

Objectives

To investigate the effects of ketone monoester (KME) on brain metabolism, cognitive performance and AD pathogenic cascades in cognitively normal older adults with metabolic syndrome and therefore at higher risk for AD. DESIGN: Double-blinded randomized placebo-controlled clinical trial.

Setting

Clinical Unit of the National Institute on Aging, Baltimore, US.

Participants

Fifty cognitively intact adults ≥ 55 years old, with metabolic syndrome.

Intervention

Drinks containing 25 g of KME or isocaloric placebo consumed three times daily for 28 days.

Outcomes

Primary: concentration of beta-hydroxybutyrate (BHB) in precuneus measured with Magnetic Resonance Spectroscopy (MRS). Exploratory: plasma and urine BHB, multiple brain and muscle metabolites detected with MRS, cognition assessed with the PACC and NIH toolbox, biomarkers of AD and metabolic mediators in plasma extracellular vesicles, and stool microbiome.

Discussion

This is the first study to investigate the AD-biomarker and cognitive effects of KME in humans. Ketone monoester is safe, tolerable, induces robust ketosis, and animal studies indicate that it can modify AD pathology. By conducting a study of KME in a population at risk for AD, we hope to bridge the existing gap between pre-clinical evidence and the potential for brain-metabolic, pro-cognitive, and anti-Alzheimer’s effects in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Knopman DS, Jones DT, Greicius MD. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement. 2021;17(4):696–701, https://doi.org/10.1002/alz.12213.

    Article  PubMed  Google Scholar 

  2. Sabbagh MN, Cummings J. Open Peer Commentary to “Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE Trials as reported by Biogen December 2019”. Alzheimers Dement. 2021;17(4):702–3, https://doi.org/10.1002/alz.12235.

    Article  PubMed  Google Scholar 

  3. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement (N Y). 2020;6(1):e12050, https://doi.org/10.1002/trc2.12050.

    Google Scholar 

  4. Castellano CA, Nugent S, Paquet N, Tremblay S, Bocti C, Lacombe G, et al. Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J Alzheimers Dis. 2015;43(4):1343–53, https://doi.org/10.3233/JAD-141074.

    Article  CAS  PubMed  Google Scholar 

  5. Castellano CA, Paquet N, Dionne IJ, Imbeault H, Langlois F, Croteau E, et al. A 3-Month Aerobic Training Program Improves Brain Energy Metabolism in Mild Alzheimer’s Disease: Preliminary Results from a Neuroimaging Study. J Alzheimers Dis. 2017;56(4):1459–68, https://doi.org/10.3233/JAD-161163.

    Article  CAS  PubMed  Google Scholar 

  6. Cahill GF, Jr. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1–22, https://doi.org/10.1146/annurev.nutr.26.061505.111258.

    Article  CAS  PubMed  Google Scholar 

  7. Cahill GF, Jr., Veech RL. Ketoacids? Good medicine? Trans Am Clin Climatol Assoc. 2003;114:149–61; discussion 62-3, 12813917.

    PubMed  PubMed Central  Google Scholar 

  8. Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19(9):609–33, https://doi.org/10.1038/s41573-020-0072-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cunnane SC, Courchesne-Loyer A, Vandenberghe C, St-Pierre V, Fortier M, Hennebelle M, et al. Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer’s Disease. Front Mol Neurosci. 2016;9:53, https://doi.org/10.3389/fnmol.2016.00053.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Avgerinos KI, Egan JM, Mattson MP, Kapogiannis D. Medium Chain Triglycerides induce mild ketosis and may improve cognition in Alzheimer’s disease. A systematic review and meta-analysis of human studies. Ageing Research Reviews. 2019, https://doi.org/10.1016/j.arr.2019.101001.

  11. Fortier M, Castellano CA, Croteau E, Langlois F, Bocti C, St-Pierre V, et al. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement. 2019;15(5):625–34, https://doi.org/10.1016/j.jalz.2018.12.017.

    Article  PubMed  Google Scholar 

  12. Neth BJ, Mintz A, Whitlow C, Jung Y, Solingapuram Sai K, Register TC, et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: a pilot study. Neurobiol Aging. 2020;86:54–63, https://doi.org/10.1016/j.neurobiolaging.2019.09.015

    Article  CAS  PubMed  Google Scholar 

  13. Phillips MCL, Deprez LM, Mortimer GMN, Murtagh DKJ, McCoy S, Mylchreest R, et al. Randomized crossover trial of a modified ketogenic diet in Alzheimer’s disease. Alzheimers Res Ther. 2021;13(1):51, https://doi.org/10.1186/s13195-021-00783-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kapogiannis D, Avgerinos KI. Brain glucose and ketone utilization in brain aging and neurodegenerative diseases. Int Rev Neurobiol. 2020;154:79–110, https://doi.org/10.1016/bs.irn.2020.03.015.

    Article  CAS  PubMed  Google Scholar 

  15. Clarke K, Tchabanenko K, Pawlosky R, Carter E, Todd King M, Musa-Veloso K, et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol. 2012;63(3):401–8, https://doi.org/10.1016/j.yrtph.2012.04.008.

    Article  CAS  PubMed  Google Scholar 

  16. Soto-Mota A, Vansant H, Evans RD, Clarke K. Safety and tolerability of sustained exogenous ketosis using ketone monoester drinks for 28 days in healthy adults. Regul Toxicol Pharmacol. 2019:104506, https://doi.org/10.1016/j.yrtph.2019.104506.

  17. Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, et al. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 2016;24(2):256–68, https://doi.org/10.1016/j.cmet.2016.07.010.

    Article  CAS  PubMed  Google Scholar 

  18. Stubbs BJ, Cox PJ, Evans RD, Cyranka M, Clarke K, de Wet H. A Ketone Ester Drink Lowers Human Ghrelin and Appetite. Obesity (Silver Spring). 2018;26(2):269–73, https://doi.org/10.1002/oby.22051.

    Article  CAS  Google Scholar 

  19. Kashiwaya Y, Bergman C, Lee JH, Wan R, King MT, Mughal MR, et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2013;34(6):1530–9, https://doi.org/10.1016/j.neurobiolaging.2012.11.023.

    Article  CAS  PubMed  Google Scholar 

  20. Pawlosky RJ, Kashiwaya Y, King MT, Veech RL. A Dietary Ketone Ester Normalizes Abnormal Behavior in a Mouse Model of Alzheimer’s Disease. Int J Mol Sci. 2020;21(3), https://doi.org/10.3390/ijms21031044.

    Google Scholar 

  21. Evans M, Egan B. Intermittent Running and Cognitive Performance after Ketone Ester Ingestion. Med Sci Sports Exerc. 2018;50(11):2330–8, https://doi.org/10.1249/MSS.0000000000001700.

    Article  CAS  PubMed  Google Scholar 

  22. Razay G, Vreugdenhil A, Wilcock G. The metabolic syndrome and Alzheimer disease. Arch Neurol. 2007;64(1):93–6, https://doi.org/10.1001/archneur.64.1.93.

    Article  PubMed  Google Scholar 

  23. Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol. 2011;68(1):51–7, https://doi.org/10.1001/archneurol.2010.225.

    Article  PubMed  Google Scholar 

  24. Castellano CA, Baillargeon JP, Nugent S, Tremblay S, Fortier M, Imbeault H, et al. Regional Brain Glucose Hypometabolism in Young Women with Polycystic Ovary Syndrome: Possible Link to Mild Insulin Resistance. PLoS One. 2015;10(12):e0144116, https://doi.org/10.1371/journal.pone.0144116.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5, https://doi.org/10.1161/CIRCULATIONAHA.109.192644.

    Article  CAS  PubMed  Google Scholar 

  26. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome— a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80, https://doi.org/10.1111/j.1464-5491.2006.01858.x

    Article  CAS  PubMed  Google Scholar 

  27. Stubbs BJ, Cox PJ, Evans RD, Santer P, Miller JJ, Faull OK, et al. On the Metabolism of Exogenous Ketones in Humans. Front Physiol. 2017;8:848, https://doi.org/10.3389/fphys.2017.00848.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stubbs BJ, Cox PJ, Kirk T, Evans RD, Clarke K. Gastrointestinal Effects of Exogenous Ketone Drinks are Infrequent, Mild and Vary According to Ketone Compound and Dose. Int J Sport Nutr Exerc Metab. 2019:1–23, https://doi.org/10.1123/ijsnem.2019-0014.

  29. Wiers CE, Vendruscolo LF, van der Veen JW, Manza P, Shokri-Kojori E, Kroll DS, et al. Ketogenic diet reduces alcohol withdrawal symptoms in humans and alcohol intake in rodents. Sci Adv. 2021;7(15), https://doi.org/10.1126/sciadv.abf6780.

    Google Scholar 

  30. Mullins R, Reiter D, Kapogiannis D. Magnetic resonance spectroscopy reveals abnormalities of glucose metabolism in the Alzheimer’s brain. Ann Clin Transl Neurol. 2018;5(3):262–72, https://doi.org/10.1002/acn3.530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amara CE, Marcinek DJ, Shankland EG, Schenkman KA, Arakaki LS, Conley KE. Mitochondrial function in vivo: spectroscopy provides window on cellular energetics. Methods. 2008;46(4):312–8, https://doi.org/10.1016/j.ymeth.2008.10.001.

    Article  CAS  PubMed  Google Scholar 

  32. Choi S, Reiter DA, Shardell M, Simonsick EM, Studenski S, Spencer RG, et al. 31P Magnetic Resonance Spectroscopy Assessment of Muscle Bioenergetics as a Predictor of Gait Speed in the Baltimore Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci. 2016;71(12):1638–45, https://doi.org/10.1093/gerona/glw059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Donohue MC, Sperling RA, Salmon DP, Rentz DM, Raman R, Thomas RG, et al. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 2014;71(8):961–70, https://doi.org/10.1001/jamaneurol.2014.803

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gershon RC, Wagster MV, Hendrie HC, Fox NA, Cook KF, Nowinski CJ. NIH toolbox for assessment of neurological and behavioral function. Neurology. 2013;80(11 Suppl 3):S2-, https://doi.org/10.1212/WNL.0b013e3182872e5f.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Derby CA, Burns LC, Wang C, Katz MJ, Zimmerman ME, L’Italien G, et al. Screening for predementia AD: time-dependent operating characteristics of episodic memory tests. Neurology. 2013;80(14):1307–14, https://doi.org/10.1212/WNL.0b013e31828ab2c9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Elias MF, Beiser A, Wolf PA, Au R, White RF, D’Agostino RB. The preclinical phase of alzheimer disease: A 22-year prospective study of the Framingham Cohort. Arch Neurol. 2000;57(6):808-, https://doi.org/10.1001/archneur.57.6.808.

    Article  CAS  PubMed  Google Scholar 

  37. Grober E, Hall CB, Lipton RB, Zonderman AB, Resnick SM, Kawas C. Memory impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer’s disease. J Int Neuropsychol Soc. 2008;14(2):266–78, https://doi.org/10.1017/S1355617708080302.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, et al. Utility of Neuronal-Derived Exosomes to Examine Molecular Mechanisms That Affect Motor Function in Patients With Parkinson Disease: A Secondary Analysis of the Exenatide-PD Trial. JAMA Neurol. 2019;76(4):420-, https://doi.org/10.1001/jamaneurol.2018.4304.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kapogiannis D, Dobrowolny H, Tran J, Mustapic M, Frodl T, Meyer-Lotz G, et al. Insulin-signaling abnormalities in drug-naive first-episode schizophrenia: Transduction protein analyses in extracellular vesicles of putative neuronal origin. Eur Psychiatry. 2019;62:124–9, https://doi.org/10.1016/j.eurpsy.2019.08.012.

    Article  PubMed  Google Scholar 

  40. Mustapic M, Tran J, Craft S, Kapogiannis D. Extracellular Vesicle Biomarkers Track Cognitive Changes Following Intranasal Insulin in Alzheimer’s Disease. J Alzheimers Dis. 2019;69(2):489-, https://doi.org/10.3233/JAD-180578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walker KA, Chawla S, Nogueras-Ortiz C, Coresh J, Sharrett AR, Wong DF, et al. Neuronal insulin signaling and brain structure in nondemented older adults: the Atherosclerosis Risk in Communities Study. Neurobiology of aging. 2021;97:65-, https://doi.org/10.1016/j.neurobiolaging.2020.09.022.

    Article  CAS  PubMed  Google Scholar 

  42. Kapogiannis D, Mustapic M, Shardell MD, Berkowitz ST, Diehl TC, Spangler RD, et al. Association of Extracellular Vesicle Biomarkers With Alzheimer Disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol. 2019;76(11):1340-, https://doi.org/10.1001/jamaneurol.2019.2462.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Eitan E, Tosti V, Suire CN, Cava E, Berkowitz S, Bertozzi B, et al. In a randomized trial in prostate cancer patients, dietary protein restriction modifies markers of leptin and insulin signaling in plasma extracellular vesicles. Aging Cell. 2017;16(6):1430–3, https://doi.org/10.1111/acel.12657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xin L, Ipek O, Beaumont M, Shevlyakova M, Christinat N, Masoodi M, et al. Nutritional Ketosis Increases NAD(+)/NADH Ratio in Healthy Human Brain: An in Vivo Study by (31)P-MRS. Front Nutr. 2018;5:62, https://doi.org/10.3389/fnut.2018.00062.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19(2):179-, https://doi.org/10.1016/S1474-4422(19)30356-4.

    Article  CAS  PubMed  Google Scholar 

  46. Park S, Zhang T, Wu X, Yi Qiu J. Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model. J Clin Biochem Nutr. 2020;67(2):188–98, https://doi.org/10.3164/jcbn.19-87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018;145:163–8, https://doi.org/10.1016/j.eplepsyres.2018.06.015

    Article  PubMed  Google Scholar 

  48. Borkovec TD, Costello E. Efficacy of applied relaxation and cognitive-behavioral therapy in the treatment of generalized anxiety disorder. J Consult Clin Psychol. 1993;61(4):611–9, https://doi.org/10.1037/0022-006X.6L4.611.

    Article  CAS  PubMed  Google Scholar 

  49. Devilly GJ, Borkovec TD. Psychometric properties of the credibility/expectancy questionnaire. J Behav Ther Exp Psychiatry. 2000;31(2):73–86, https://doi.org/10.1016/S0005-7916(00)00012-4.

    Article  CAS  PubMed  Google Scholar 

  50. Devilly GJ, Spence SH. The relative efficacy and treatment distress of EMDR and a cognitive-behavior trauma treatment protocol in the amelioration of posttraumatic stress disorder. J Anxiety Disord. 1999;13(1–2):131–57, https://doi.org/10.1016/s0887-6185(98)00044-9

    Article  CAS  PubMed  Google Scholar 

  51. Kapogiannis D, Reiter DA, Willette AA, Mattson MP. Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage. 2013;64:112–9, https://doi.org/10.1016/j.neuroimage.2012.09.029.

    Article  CAS  PubMed  Google Scholar 

  52. Schulte RF, Lange T, Beck J, Meier D, Boesiger P. Improved two-dimensional J-resolved spectroscopy. NMR Biomed. 2006;19(2):264–70, https://doi.org/10.1002/nbm.1027.

    Article  CAS  PubMed  Google Scholar 

  53. Heimer J, Gascho D, Chatzaraki V, Knaute DF, Sterzik V, Martinez RM, et al. Postmortem (1)H-MRS-Detection of Ketone Bodies and Glucose in Diabetic Ketoacidosis. Int J Legal Med. 2018;132(2):593–8, https://doi.org/10.1007/s00414-017-1741-0.

    Article  PubMed  Google Scholar 

  54. Wright JN, Saneto RP, Friedman SD. Beta-Hydroxybutyrate Detection with Proton MR Spectroscopy in Children with Drug-Resistant Epilepsy on the Ketogenic Diet. AJNR Am J Neuroradiol. 2018;39(7):1336–40, https://doi.org/10.3174/ajnr.A5648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–9, https://doi.org/10.1002/mrm.1910300604.

    Article  CAS  PubMed  Google Scholar 

  56. Zane AC, Reiter DA, Shardell M, Cameron D, Simonsick EM, Fishbein KW, et al. Muscle strength mediates the relationship between mitochondrial energetics and walking performance. Aging Cell. 2017;16(3):461–8, https://doi.org/10.1111/acel.12568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mustapic M, Eitan E, Werner JK, Jr., Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma Extracellular Vesicles Enriched for Neuronal Origin: A Potential Window into Brain Pathologic Processes. Front Neurosci. 2017;11:278, https://doi.org/10.3389/fnins.2017.00278.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L, et al. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J. 2016;30(11):3853–9, https://doi.org/10.1096/fj.201600756R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Andreazza AC, Laksono I, Fernandes BS, Toben C, Lewczuk P, Riederer P, et al. Guidelines for the standardized collection of blood-based biomarkers in psychiatry: Steps for laboratory validity - a consensus of the Biomarkers Task Force from the WFSBP. World J Biol Psychiatry. 2019;20(5):340-, https://doi.org/10.1080/15622975.2019.1574024.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kapogiannis D, Boxer A, Schwartz JB, Abner EL, Biragyn A, Masharani U, et al. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease. FASEB J. 2015;29(2):589–96, https://doi.org/10.1096/fj.14-262048.

    Article  CAS  PubMed  Google Scholar 

  61. Goetzl EJ, Kapogiannis D, Schwartz JB, Lobach IV, Goetzl L, Abner EL, et al. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB J. 2016;30(12):4141–8, https://doi.org/10.1096/fj.201600816R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, et al. Low neural exosomal levels of cellular survival factors in Alzheimer’s disease. Ann Clin Transl Neurol. 2015;2(7):769–73, https://doi.org/10.1002/acn3.211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol. 2019;25(5):702–9, https://doi.org/10.1007/s13365-018-0695-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Athauda D, Gulyani S, Karnati H, Li Y, Tweedie D, Mustapic M, et al. Utility of Neuronal-Derived Exosomes to Examine Molecular Mechanisms That Affect Motor Function in Patients With Parkinson Disease: A Secondary Analysis of the Exenatide-PD Trial. JAMA Neurol, https://doi.org/10.1001/jamaneurol.2018.4304.

  65. McDaniel SS, Rensing NR, Thio LL, Yamada KA, Wong M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia. 2011;52(3):e7–11, https://doi.org/10.1111/j.1528-1167.2011.02981.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Elamin M, Ruskin DN, Masino SA, Sacchetti P. Ketone-Based Metabolic Therapy: Is Increased NAD(+) a Primary Mechanism? Front Mol Neurosci. 2017;10:377, https://doi.org/10.3389/fnmol.2017.00377.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Elamin M, Ruskin DN, Masino SA, Sacchetti P. Ketogenic Diet Modulates NAD(+)-Dependent Enzymes and Reduces DNA Damage in Hippocampus. Front Cell Neurosci. 2018;12:263, https://doi.org/10.3389/fncel.2018.00263.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yang Y, Sauve AA. NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta. 2016;1864(12):1787–800, https://doi.org/10.1016/j.bbapap.2016.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jack CR, Jr., Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16, https://doi.org/10.1016/S1474-4422(12)70291-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Younes L, Albert M, Moghekar A, Soldan A, Pettigrew C, Miller MI. Identifying Changepoints in Biomarkers During the Preclinical Phase of Alzheimer’s Disease. Front Aging Neurosci. 2019;11:74, https://doi.org/10.3389/fnagi.2019.00074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutrition and Metabolism. 2009;6, https://doi.org/10.1186/1743-7075-6-31.

  72. Taylor MK, Sullivan DK, Mahnken JD, Burns JM, Swerdlow RH. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimers Dement (N Y). 2018;4:28–36, https://doi.org/10.1016/j.trd.2017.11.002.

    Article  Google Scholar 

  73. Vandenberghe C, St-Pierre V, Pierotti T, Fortier M, Castellano CA, Cunnane SC. Tricaprylin Alone Increases Plasma Ketone Response More Than Coconut Oil or Other Medium-Chain Triglycerides: An Acute Crossover Study in Healthy Adults. Curr Dev Nutr. 2017;1(4):e000257, https://doi.org/10.3945/cdn.116.000257.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Leckey JJ, Ross ML, Quod M, Hawley JA, Burke LM. Ketone Diester Ingestion Impairs Time-Trial Performance in Professional Cyclists. Front Physiol. 2017;8:806, https://doi.org/10.3389/fphys.2017.00806.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Murray AJ, Knight NS, Cole MA, Cochlin LE, Carter E, Tchabanenko K, et al. Novel ketone diet enhances physical and cognitive performance. FASEB J. 2016;30(12):4021–32, https://doi.org/10.1096/fj.201600773R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pawlosky RJ, Kemper MF, Kashiwaya Y, King MT, Mattson MP, Veech RL. Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer’s disease. J Neurochem. 2017;141(2):195–207, https://doi.org/10.1111/jnc.13958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Beckett TL, Studzinski CM, Keller JN, Paul Murphy M, Niedowicz DM. A ketogenic diet improves motor performance but does not affect beta-amyloid levels in a mouse model of Alzheimer’s disease. Brain Res. 2013;1505:61–7, https://doi.org/10.1016/j.brainres.2013.01.046.

    Article  CAS  PubMed  Google Scholar 

  78. Brownlow ML, Benner L, D’Agostino D, Gordon MN, Morgan D. Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer’s pathology. PLoS One. 2013;8(9):e75713, https://doi.org/10.1371/journal.pone.0075713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Kapogiannis.

Ethics declarations

Conflicts of Interest: The authors declare no conflicts of interest.

Ethical Standards: The study protocol was approved by the NIH IRB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avgerinos, K.I., Mullins, R.J., Egan, J.M. et al. Ketone Ester Effects on Biomarkers of Brain Metabolism and Cognitive Performance in Cognitively Intact Adults ≥ 55 Years Old. A Study Protocol for a Double-Blinded Randomized Controlled Clinical Trial. J Prev Alzheimers Dis 9, 54–66 (2022). https://doi.org/10.14283/jpad.2022.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2022.3

Key words

Navigation